
LA-UR-19-30451
Approved for public release; distribution is unlimited.

Title: Uncertainty in an Equation of State: How Tightly do Data Constrain
Quantities of Interest?

Author(s): Fraser, Andrew Mcleod
Andrews, Stephen Arthur

Intended for: Report

Issued: 2019-10-15 (Draft)



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



Uncertainty in an Equation of State: How

Tightly do Data Constrain Quantities of Interest?

Andrew Fraser and Stephen Andrews

Abstract

We illustrate two applications of F UNCLE analysis using the associ-
ated software and data from several experiments with PBX-9501. In the
first application, we investigate the consistency of out of sample experi-
mental data with physical principles and data used for calibration. In the
second application, we calculate the risk that the value of a cost function
(often called a metric) exceeds a threshold.

1 Introduction

In previous work[1, 2] we described a procedure for fitting unknown functions to
experimental data subject to constraints. We called the procedure Functional
Uncertainty Constrained by Law and Experiment or F UNCLE. In [3] we re-
ported applying F UNCLE to data from four kinds of experiments [4, 5, 6, 7, 8]
to obtain both an estimate of the EOS for the gasses produced by detonating
PBX-9501 and an estimate of the corresponding uncertainty. Here we demon-
strate the application of those results to two questions about an experiment not
used for the estimation, namely: Is the uncertainty in the EOS large enough to
permit an EOS that would let a simulation match the data? And is the risk
of the value of a specific cost function or metric exceeding a specified threshold
acceptable?

1.1 Definitions

We begin by defining the following quantities and functions:

Vmeasured: An experimentally measured velocity as a function of time. The trace
is from probe 5 of shot 3 of the experiments by Pemberton et al.[6]. While
other traces from that set of experiments were used to estimate the EOS,
probe 5 of shot 3 was not among them.

µ
MAP

: The nominal (maximum a posterior probability) vector of degrees of
freedom.

Vnominal: The velocity simulated using µMAP .
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E: The difference between a simulation and a measured PDV trace:

E(t) ≡ Vnominal − Vmeasured (1)

PS,CJ(ρ): A model of the HE products EOS:

PS,CJ(ρ) ≡ Pressure as a function of density on the CJ isentrope (2)

uPS,CJ(ρ)
: The uncertainty

uPS,CJ(ρ)
≡ uncertainty in a model of the HE products EOS (3)

ε: A deviation from nominal:

ε(t) = V (t)− Vnominal(t)

C: A cost functional:
C(ε) ≡ 〈ε, Vcost〉 (4)

Vcost: In (4), the function Vcost is a test direction and its magnitude defines the
maximum acceptable cost.

Climit: The maximum acceptable cost

Climit = 〈Vcost, Vcost〉
= 0.01384

Characteristics of the EOS, PS,CJ(ρ), velocity traces, and the cost function ap-
pear in Fig. 1.

Now we pose our questions using the above notation:

Q1: Is the uncertainty uPS,CJ(ρ)
large enough to allow a pressure, P1, that would

explain E?

Q2: Is the uncertainty uPS,CJ(ρ)
small enough to ensure that Prisk, the proba-

bility of a cost greater than C(Vcost), is less than a specified threshed say
1%?

2 Procedure

2.1 Constraints from Old Experiments

F UNCLE calculates how information from experimental measurements con-
strains uncertainty about models. We use a Mie Gruneisen form here, but rather
than follow [5] and estimate a function for γ, we simply use a fixed value to get
EOS functions from functions of one variable, namely PS,CJ(ρ). We use FLAG
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Figure 1: Plots of the the measured and simulated velocity (upper left), the
difference (E , upper right), the pressure on the CJ isentrope (PS,CJ(ρ), lower
left), and the cost function (Vcost, lower right).
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Figure 2: A comparison of the prior and a posteriori distributions of PS,CJ(ρ).
The modes of the two distributions appear in the upper left plot. We used
100 random draws from the prior to make the plot in the lower left; plotting
each sample divided by the mode. A similar plot of draws from the a posteriori
distribution divided by the mode of the prior appears in the lower right. To
make the plots of uncertainty bounds that appears in the upper right, we took
1000 random draws from each distribution and for each sampled value of ρ
sorted the list of values of PS,CJ(ρ)(ρ) divided by the mean of the prior. Then
we plotted the values at the 2.5% and 97.5% levels of that list.

simulations, ΦFLAG, to map from pressure functions to deviation functions ε,
writing

ε(P )(t) = ΦFLAG(P )(t)− Vnominal(t). (5)

We represent PS,CJ(ρ) as a vector, a, of 55 basis function coefficients and then
use probability distributions in R55 to characterizes uncertainty about PS,CJ(ρ).
Figure 2 illustrates the how information from experiments constrains the uncer-
tainty about PS,CJ(ρ).
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2.2 Derivatives and Random Samples

With the map from coefficient vectors, a, to functions, PS,CJ(ρ), we approximate
the derivative of ε with respect to PS,CJ(ρ) by finite difference calculations:

Di ≈
∂ε

∂ai
=
∂ΦFLAG

∂ai
, (6)

which requires 56 simulations.
F UNCLE uses an un-normalized constrained Laplace approximation of the

a posteriori probability density function of the vector a, that defines a pressure
function, P , ie,

Prob(a) ∝ e− 1
2 (a−µ

MAP
)TΣ−1(a−µ

MAP
) · I(a) ≡ L(a) (7)

where

I(a) =

{
1 if constraints are satisfied

0 otherwise
(8)

We draw a set, R = {r1, r2, · · · , rN}, of random samples from the a posteriori
distribution and calculate L(r) for each sample. To define a plausible vector of
coefficients, we sort the random samples in order of the values L(r) and select
a fraction Fcutoff . We define a cutoff value, Lcutoff , with

Lcutoff : L(r) < Lcutoff for exactly Fcutoff ·N elements r ∈ R. (9)

Then we use Lcutoff to define a plausible coefficient vector, a, as one that satisfies

a is plausible ⇐⇒ L(a) ≥ Lcutoff . (10)

Figure 3 illustrates the empirical cumulative distribution of values of L(r) for
the values of r ∈ R. For this work the values are

N = 1000

Fcutoff = 0.01

Lcutoff = 1.246E − 13.

2.3 Map from Measurements to Models with a Pseudo-
Inverse

We seek an estimate of the pressure function that would produce the experi-
mentally measured velocity, ie, argminP |ΦFLAG(P )− Vmeasured| which we ap-
proximate with the vector of coefficients

a1 = µMAP +D+E , (11)

where D+ is the Moore Penrose inverse

D+ = 〈D,D〉−1
D, (12)
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Figure 3: A plot of the empirical cumulative distribution of values of L(r).
The horizontal line labeled Nlimit illustrates a cutoff fraction Fcutoff = 0.05,
and the vertical line labeled Llimit illustrates the corresponding value Lcutoff =
1.246E − 13.
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Figure 4: Pressure functions. The maximum of the a posteriori probability
density appears on left. Bounds on plausible deviations appear in the center.
And P1, estimated to explain the difference between the data and the simulation,
appears on the right. Notice that P1 is not uniformly positive, monotonic, or
convex.
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Figure 5: A plot of L(µ
MAP

+ s ·a1), the Laplace function, vs s. Notice that the
range of s is small and that the constraints exclude values s > 1.014× 10−5, ie,
any significant shift towards a1 violates the constraints. Thus the answer to the
first question is “no”; the uncertainty in PS,CJ(ρ) is not large enough to permit
the pressure function, P1, that would explain the velocity difference E .
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Figure 6: The complementary cumulative probability distribution of cost. The
horizontal line illustrates the maximum acceptable risk, Prisk = 0.01, and the
vertical line illustrates the maximum acceptable cost, Climit = 〈Vcost, Vcost〉 =
0.01384. The lines intersect above the curve indicating that the answer to the
second question is “yes”; the probability of C > Climit is less than 1%, ie, the
risk is acceptable.

and D is defined in (6). We call the estimated pressure function P1. The
plot that appears in Fig. 4 shows that P1 violates the positivity, monotonicity,
and convexity constraints. Figure 5 illustrates the Laplace density along a line
through a = µMAP in the direction given by a1.

We also use the derivative to estimate the cost1 of the pressure function
corresponding to coefficients a with

C(a) = C(D(a− µ
MAP

)) = 〈Vcost, D(a− µ
MAP

)〉
= 〈Vcost, D〉 (a− µMAP

). (13)

The distribution of costs corresponding to the random draws appears in Fig. 6.

3 Results and Conclusion

With these definitions, we more precisely state and answer the questions in
Sect. 1 as follows:

Q1: Is the perturbation of the pressure corresponding to the vector of coeffi-
cients a1 plausible?

1We calculate the cost in terms of deviations from a nominal case. However, the experi-
mental data indicates that our nominal model is flawed.
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A1: No2 Because L(a1) = 0. It would only be plausible if L(a1) > Lcutoff =
1.246E − 13. Figure 5 illustrates the result.

Since no plausible change in the EOS model can explain the difference E , we
don’t have a plausible model to use for answering Q2. To proceed, we suppose
that we can identify and correct some other modeling error that explains the
discrepancy E .

Q2: For the cost functional defined in (4),

C(δε) ≡ 〈δε, Vcost〉 ,

we ask if Prisk, the probability of a cost higher than Climit, is less than 1%,
ie,

Prisk ≡ Prob {δε : C(δε) > Climit} ≤ 0.01? (14)

A2: Yes, Fcutoff < 0.01, where Fcutoff is the fraction of elements, r, of R that
satisfy

〈Vcost, D(r − µMAP)〉 > Climit or

〈Vcost, D〉 (r − µMAP) > Climit. (15)

Figure 6 illustrates the result.

4 Notation

In Section 2 we introduced the following additional notation:

a: A vector of coefficients that are the degrees of freedom in a pressure function,
PS,CJ(ρ).

a1: A linear estimate of the vector of coefficients that would resolve E the dif-
ference between the simulation and experiment. See (11).

D: The derivative of velocity with respect to degrees of freedom. See (6).

D+: The pseudo-inverse of D. See (12).

Fcutoff : The fraction of draws deemed implausible. See (9).

I: The indicator function for the constraints. See (8).

L: An un-normalized maximum a posteriori probability density function given
by the Laplace approximation with constraints. See (7).

Lcutoff : The smallest plausible value of L. See (9) and (10).

2If rather than simply examining a line in the direction of a1 we searched in the direction
of a∗ ≡ argmina |Vsimulation(a)− Vmeasured| subject to: L(a1) ≥ Lcutoff , we might find a
plausible pressure function that comes closer to explaining E.
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P1: The pressure function obtained from the degrees of freedom a1.

Prisk: The maximum acceptable probability of cost exceeding a threshold.

R: A set of vectors drawn randomly from L.

r: An element of R.

γ: Gruneisen’s gamma.

ΦFLAG: The map from pressure functions to velocity functions implemented by
the program named FLAG. See (5).
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