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1. Summary of Fraser et al.

In the framework of Fraser et al. [], measurements
from a single object Y vary with nuisance parameters φ.
The set of possible nuisance parameters maps any single
object to a low dimensional manifold in the space of pos-
sible measurements G. They write the jth measurement
of object Yi as

(1) gij = τ(Yi, φij) + εij ,

in which εij ∼ N (0,Σw) denotes an independent mea-
surement error.

Consider the Taylor series

τ(Y, φ) = τ(Y, φ̄) + V (φ− φ̄) + (φ− φ̄)tH(φ− φ̄) + R,

where

(2) Vi =
∂τ(Y, φ)

∂φi

∣∣∣∣
φ=φ̄

and Hi,j =
∂2τ(Y, φ)
∂φi∂φj

∣∣∣∣
φ=φ̄

.

If the excursions of φij from its mean φ̄i are small, then

(3) τ(Yi, φij) ≈ µi + Vi(φij − φ̄i)

where µi ≡ τ(Yi, φ̄i). And if φij and εij are independent
and Gaussian, then

(4) gij ∼ N
(
µi, ViΣφ,iV

t
i + Σw

)
,

i.e.,
(5)

P(g|Yi) =
1√

(2π)N |Σi|
exp

(
−1

2
(g − µi)tΣ−1

i (g − µi)
)

,

where N is the dimension of G. Fraser et al. specify the
parameter values as follows:

Class mean, µi: Use the mean of the measurements
available for individual Yi.

Class-conditional covariance matrix Σi:

(6) Σi ≡ ViΣφ,iV
t
i + Σw

Prior probabilities for classes, π(i): Fraser et al.
set π(i) =

√
|Σi| so that classification could be

done on the basis of Mahalanobis distance alone.
Pooled within-class covariance, Σw: Fit to the

training data.

Tangent to manifold, Vi: Differentiate the func-
tion τ with respect to the nuisance parameters φ
and evaluate at µi.

Covariance of nuisance parameters, Σφ,i: They
use a formula, Eq. (11), for this matrix that de-
pends on the second derivative of the function τ
and the within-class covariance matrix Σw.

With these parameters, the Bayes classifier minimizes a
sum of the Mahalanobis distance and a data independent
constant,

Ŷ (g) = argmax
i

P(g|Y = i)π(i)(7a)

= argmin
i

(g − µi)tΣ−1
i (g − µi) + log

|Σi|
1
2

π(i)
.(7b)

Fraser et al. drop the last term, saying that π(i) = |Σi|
1
2

is an acceptable lie.
Choosing Σφ for each individual Yi is a compromise

between the two contradictory goals: (1) allow large ex-
cursions in the tangent directions; (2) limit the error of
approximating the manifold with its tangent. Figure 1
illustrates the situation. The intuition is that in order
to constrain the distance from points on the tangent to
the true manifold, the bounds on displacements along the
tangent should be inversely proportional to the second de-
rivative.

In terms of the eigen-decomposition

Σw =
∑

d

edλde
t
d

Fraser et al. calculate Σφ as follows. Break the dim(Φ)×
dim(G)× dim(Φ) tensor H into components

(8) Hd ≡ et
dH .

For each component, define the dim(Φ)×dim(Φ) positive
definite matrix

(9) H+
d ≡

√
HdHd ,

and take the average

(10) H̄ ≡
∑

d

H+
d λ−1

d .

Finally set

(11) Σφ = α
(
H̄

)−1
,

where α functions as a Lagrange multiplier that balances
the contradictory goals.
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Figure 1. A geometric view of the model. For each class k ∈ {1, 2, 3}, the black dot labeled µk

represents the class mean, the blue curve labeled τ(Yk, φk) represents the manifold generated by the
nuisance parameters, the red line labeled Vkφk represents the tangent to the manifold at µk, and
the green ellipse labeled Σw represents level sets of (g − µk)tΣ−1

w (g − µk). To obtain class-specific
covariance matrices Σk, they augment the pooled covariance with a term whose direction is given by
the tangent to the manifold and whose magnitude is proportional to the inverse of the curvature of
the manifold.

2. A Worked Example

Consider a contrived task in which we are asked to
classify measurements of a scalar field on a circle θ ∈
[0, 2π):

• The four equiprobable classes are:

f1(θ) = cos(θ)

f2(θ) = cos(2θ)

f3(θ) = cos(3θ)

f4(θ) = cos(4θ)

• The components of the measurement vectors g
are taken at 64 equally spaced discrete locations{

g (θt) : θ0 = 0, θ1 =
2π

64
, θ2 =

2 · 2π

64
, . . . θ2 =

63 · 2π

64

}
.

The vectors consist of correlated Gaussian noise
η ∼ N (0,Ση) added to one of the classes shifted
by a random time φ, i.e.,

τ(Yn, φ) = cos(n(θ + φ)) and

g(θt) = fn(θt + φ) + η(θt)

• Ση is diagonalized by the discrete Fourier trans-
form F and has eigenvalues σ2

k.

The Bayes classifier is

n̂ = argmax
n

p(g|n)(12)

= argmax
n

∫
p(g|n, φ)p(φ)dφ.(13)

Note that for G ≡ Fg

p(g|n, φ) =
1√

(2π)64
∏

k σ2
k

e
− 1

2

P
k 6=n

G∗kGk

σ2
k

× e
− 1

2
(Gn−e−inφ)∗(Gn−e−inφ)

σ2
n .

If σ2
n is small then Re (Gn) ≈ cos(φ) and Im (Gn) ≈

sin(φ), i.e., Gn is near the unit circle in C
The approach of Fraser et al. makes sense if the density

p(φ) is concentrated near φ = 0. In that case, one might
simplify Eqn. (13) using the approximation1

− log
∫

e
− (Gn−e−inφ)∗(Gn−e−inφ)

2σ2
n p(φ)dφ

≈ (Re (GN )− 1)2

2σ2
n

+ ε
(Im (GN ))2

2σ2
n

where ε is inversely proportional to the variance of φ. The
result is similar to the approach of Fraser et al. as the
following illustrates.

1I have not verified this integral.
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The first and second derivatives of τ(Yn, φ) with re-
spect to φ are

Vn(t) =
(
− sin

(
2πnt

64

))
2πn

64
and

Hn(t) =
(
− cos

(
2πnt

64

)) (
2πn

64

)2

respectively. Working in the frequency domain

Vn(ωm) =
1√
64
−2πim

64
δ|m|,n

Hn(ωm) =
−1√
64

(
2πm

64

)2

δ|m|,n

H̄ =
(2πn)2

8(64)2σ2
n

,

and the augmentation term (see Eqn. (6)) for the covari-
ance matrix of class n has four components

(
VnΣφ,nV t

n

)
j,k

=


α
8 σ2

n if j = k = n or − j = −k = n

−α
8 σ2

n if j = −k = n or − j = k = n

0 otherwise.

The resulting classifier

n̂ = argmin
n

 (Re (Gn)− 1)2

σ2
n

+
(Im (Gn))2

(1 + α
8 )σ2

n

+

64
2∑

k=0:k 6=n

|Gk|2

σ2
k


deemphasizes Im (Gn) (which to first order corresponds
to time shifts) by the factor 1 + α

8 .


