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Preface

This book arose from a pair of symposia on hidden Markov models that Kevin
Vixie organized at the 2001 SIAM Dynamical Systems meeting. At the end
of the first symposium someone asked for a simple reference that explains the
basic ideas and algorithms for applying HMMs. We were stumped1. A group
of the participants suggested writing this book to answer the question. Two
years later, Fraser alone delivered a proposal for the book that included about
two chapters to SIAM at the 2003 Dynamical Systems meeting. Sometime after
SIAM published the first edition in 2008, we (Fraser alone again) began working
on updating the software we used to generate the book. In an effort to use better
software practices, we wrote tests, and one of those tests revealed a conceptual
error in the last chapter of the book. In the current edition Chapter 6 is a
thorough revision that addresses the same tasks with a simpler approach.

The book is intended for readers who have backgrounds and interests typical
of those who attend the SIAM Dynamical Systems meetings. In particular, our
view is that HMMs are discrete state discrete time stochastic dynamical systems,
and that they are often used to approximate dynamical systems with continuous
state spaces operating in continuous time. Thus, by using familiar analogies,
it should be easy to explain HMMs to readers who have studied dynamical
systems.

The basic techniques were well developed in the 1970’s for work on speech
and language processing. Many in speech research in the 1980’s through the
end of the century learned about the techniques at a symposium held at the
Institute for Defense Analysis in Princeton. A small number of proceedings of
that symposium [2] were printed, and the volume was called the blue book by
workers in the field. We were not part of that community, but we have a copy of
the blue book. It explains the basic algorithms and illustrates them with simple
concrete examples. We hope our book is as simple, useful, and clear.

In chapters 3, 4 and 7 we extend ideas from HMMs with discrete states and
observations to more general states and observations. In literature about such
more general systems and observations, the techniques are called data assim-
ilation. Because the discrete character of the states and observations of basic
HMMs makes the ideas and algorithms for them easier to explain and under-

1In subsequent years several good references that explain the basic ideas of HMMs have
appeared, e.g., ToDo: Find some
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stand than more general data assimilation techniques, we recommend studying
HMMs before working on applications that require more those general data
assimilation tools.

Although there are now other books and papers that are about HMMs ex-
clusively or in part, we believe that the present volume is unique in that:

It is introductory Sophomore or Junior study in engineering, mathematics,
or science provides the prerequisites for most of the book. The exceptions
are ideas from dynamical systems and information theory. In particular,
we use the Gibbs inequality (Eqn. (2.54)) in developing the EM algorithm
in Chapter 2. Although Chapter 5 Toy Problems and Performance Bounds
deals with Lyapunov exponents and entropies, it is not a prerequisite for
any other chapter.

Algorithms are explained and justified We present enough of the theory
behind the basic algorithms in Chapter 2 so that a reader can use it as a
guide to developing her own variants.

We provide Python and data for the algorithms and examples You can
fetch the code and data and build the book yourself. You can examine the
source code to resolve questions about how figures were made, and you
can build on the software to try out your own ideas for variations. (See
Notes on Software on page 135 of the appendix.)

It uses analogies to dynamical systems For example, we demonstrate the
HMM training algorithm by applying it to data derived from the Lorenz
system. The result, as Fig. 1.10 illustrates, is that the algorithm estimates
a discrete state generating mechanism that is an approximation to the
state space of the original Lorenz system.

We illustrate with practical examples In Chapter 6 we present an applica-
tion to experimental measurements of electrocardiograms (ECGs). ToDo:
I want a practical application of particle filtering in Chapter 7

ToDo: Point to review papers and material (I’ve collected some of the
kind of stuff I have in mind at http://fraserphysics.com/~andy/HMMs/ ).
Perhaps organize this stuff under the following topics:

• MCMC annealing and optimization

• Other applications

• Other papers books and web sites

• Bayes nets
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Notation

In general we introduce notation as it gets used in the text and collect it in a
section at the end of the book on page 137. However to avoid confusion, we now
note our use of Python notation for sequences2, namely

y[0 : T ] ≡ [y[0], y[1], . . . , y[T − 1]] .

There are a few different notation conventions for probabilities and stochastic
processes each of which has drawbacks. We describe the conventions we’ve
chosen in the notation section.
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Chapter 1

Introduction

In a dynamical system, a rule maps states x ∈ X forward in time. Familiar
examples include discrete time maps and differential equations in which the
states are elements of Rn. At time t, the current state x[t] of a dynamical
system provides all the information necessary to calculate future states and
information about past states is redundant. Thus the sequence of states in a
dynamical system satisfies the Markov property, which we will more formally
define in Eqn. (1.7). In applications, we often think of measured data as being
a function of states of a dynamical system with y[t] = G(x[t]). The function
F that maps states forward in time and the function G that maps states to
observations make up a state space model for sequences of observations. If the
observation function is not invertible, then knowledge of the measurement y[t]
at a single time t is not sufficient to specify the state x[t] uniquely, and one
could say that x[t] is hidden. That is the sense of hidden in the term “hidden
Markov model”.

Given a short sequence of observations, say y[0 : 3] = [y[0], y[1], y[2]), one
might hope to reveal the state x[2] by looking for all initial states that are
consistent with the observations. The strategy will only work if the images of all
initial states that are consistent with the observations all fall on the same state,
i.e., if for all x such that G(x) = y[0], G ◦ F (x) = y[1], and G ◦ F ◦ F (x) = y[2],
we find that F ◦ F (x) = x̂, then the measurements are sufficient to identify
x[2] = x̂ uniquely. If such a revelation procedure works, then one can use it to
map long sequences of observations to long sequences of states and from there
to do forecasting of both states and observations.

For most of the state space models that we consider, the function that gov-
erns the state dynamics and the observation function both have random ele-
ments. Only imagination limits what constitutes the set of states in a state
space model. We will consider discrete state spaces that are sets with a finite
number of elements and state spaces that are real vector spaces. The sets of
observations are similarly varied. As a prelude, we look at some measurements
of a laser system that is “Lorenz like”.

1
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2 CHAPTER 1. INTRODUCTION

1.1 Laser Example

In 1963 E.N. Lorenz[37] reported interesting behavior in numerical solutions of
the system of equations

ẋ1 = sx2 − sx1 (1.1a)

ẋ2 = −x1x3 + rx1 − x2 (1.1b)

ẋ3 = x1x2 − bx3 (1.1c)

which he had proposed as an approximation for fluid convection. In Eqn. (1.1),
x = (x1, x2, x3) is a vector of mode amplitudes, and the parameters s, r, and
b describe properties of the fluid. The paper is widely cited, not because it
is a good model for convection, but because the interesting behavior of the
solutions has characteristics that are typical of what is now called chaos. The
Lorenz system has been used countless times as an example of a system whose
solution trajectories are unstable, aperiodic and bounded, i.e., chaotic. We will
use numerical simulations of the system as illustrations throughout this book.

In 1975 Haken[33] observed that under certain conditions a laser should
obey the same equations. For a laser, one interprets the components of the
state x as the electric field, the polarization, and the population inversion in the
laser medium. In 1992 Tang et al. [45, 56] reported measurements of the time
dependent intensity of the electric field for such a laser. The measured quantity
corresponds to (x1[t])2. Figure 1.1 shows a sequence of Tang’s measurements.
We produced the second trace in the figure by numerically integrating Eqn. (1.1)
with initial conditions and parameters selected to optimize the match. The
similarity of the two traces convincingly supports the claim that the laser system
is like the Lorenz system.

In working with Tang’s laser data, we used a stochastic state space model
with the form

x[t + 1] = F (x[t]) + η[t] (1.2a)

y[t] = G(x[t]) + ϵ[t]. (1.2b)

We implemented the function F by integrating the Lorenz system for an interval
∆τ , and we used independently identically distributed Gaussian noise with mean
zero and covariance Iσ2

η to implement the state noise η[t]. Our measurement
model is G(x[t]) = Sg · (x1[t])2 + Og where Sg and Og are fixed scale and
offset parameters, and the measurement noise ϵ[t] is independently identically
distributed Gaussian noise with mean zero and covariance Iσ2

ϵ . The model has
the following eleven free parameters:

Lorenz system parameters The values of r, s, and b in (1.1) constitute three
free parameters.

Integration time The single parameter ∆τ .

Offset and scale The pair of parameters Og and Sg.
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0 50 100 150 200 250
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250 Simulation

Laser Data

Figure 1.1: Laser intensity measurements. The trace labeled Laser is a plot of
laser intensity measurements provided by Tang et al. The trace labeled Simu-
lation plots a numerical simulation of the Lorenz system (1.1) with parameters
that optimize the match.

Measurement noise The single parameter σϵ.

State noise The single parameter ση.

Initial state distribution We model the distribution of the initial state as a
Gaussian. We treat the mean as three parameters and set the covariance
to ση.

Using this parameterization, we wrote a routine based on the extended
Kalman filter techniques described in Chapter 4 to calculate approximate prob-
abilities which we write as P∗|θ where θ denotes the collection of parameters.
By passing that routine and Tang’s data to the SciPy optimization package, we
found a parameter vector that satisfies

θ̂ = argmax
θ

P (y[0 : 250] | θ), (1.3)

where P (y[0 : 250] | θ) is the conditional probability that a sequence of 250 ob-
servations will have the values y[0], y[1], . . . , y[249] given the parameters θ. The

parameter vector θ̂ is called the maximum likelihood estimate of the parameter
vector. Figure 1.2 sketches a piece of the log-likelihood function.

Given θ̂, the maximum likelihood parameters, and the observations, we can
calculate many interesting quantities. For example, in Fig. 1.3 we have plotted
the sequence of states that has the highest probability, i.e.,

x̂[0 : 250] = argmax
x[0:250]

P (x[0 : 250] | y[0 : 250], θ̂), (1.4)



i
i

“main” — 2025/2/21 — 13:28 — page 4 — #14 i
i

i
i

i
i

4 CHAPTER 1. INTRODUCTION
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Figure 1.2: Log likelihood as function of s and b. Other parameters were taken
from the vector θ̂ that maximizes the likelihood P (y[0 : 250] | θ) (see Eqn. (1.3)).

and in Fig. 1.4 we have plotted a forecast that we made by iterating the function
F on the state x̂ that has highest probability given the first 250 observations,
i.e.,

x̂ = argmax
x[250]

P (x[250] | y[0 : 250], θ̂). (1.5)

1.2 State Space Models

To get state space models that are more general than the form (Eqn. (1.2)) that
we used to describe the laser data, we suppose only that a conditional proba-
bility distribution PX[t+1]|X[t] governs evolution in state space and another con-
ditional distribution PY [t]|X[t] governs the observations Y [t]. Combining these
two conditional distribution functions with a distribution PX[0] of initial states
defines probabilities for any collection of states and observations. In particular,
it defines the joint probabilities of the stochastic process or information source
consisting of sequences of observations. We refer to such a combination as a
model and denote it as P∗|θ. So defined, the class of state space models is so
broad that to do anything useful, we must use smaller subclasses. Typically, we
assume that the conditional distributions are time invariant and that a finite
set of parameters θ specifies the model. Notice that we have not specified the
sets from which we draw the states or observations; they could be discrete, real
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Figure 1.3: State trajectory x̂[0 : 250] estimated from observation sequence
y[0 : 250]. (see Eqn. (1.4).) Components x1 and x3 of the Lorenz system (see
Eqn. (1.1)) are plotted.
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250 300 350 400 450 500

t

50

100

150

200

250 Forecast

Laser Data

Figure 1.4: Forecast observation sequence. We set the noise terms η and ϵ to
zero and iterated Eqn. (1.2) 250 times to generate the forecast ŷ[250 : 500]. We
started with the initial condition x̂ defined by Eqn. (1.5). The forecast begins
to fail noticeably around t = 450. The failure suggests that the period five cycle
in the model is unstable. The period five cycle must have been stable in the
actual laser system to appear in the data. Thus an essential characteristic of
the model is wrong.
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1.2. STATE SPACE MODELS 7

scalars, real vectors, or something else.

1.2.1 Tasks

One can use a parameterized class of state space models
{
P∗|θ

}
in many ways

including the following:

Model Parameter Estimation Given a model class
{
P∗|θ

}
and a sequence

of observations y[0 : T ], we often use the maximum likelihood estimate

θ̂MLE ≡ argmax
θ

P (y[0 : T ] | θ) (1.6)

to characterize the source Y .

Trajectory Estimation Given a particular model P∗|θ and a sequence of ob-
servations y[0 : T ], one can calculate the conditional distribution of states
P (x[0 : T ] | y[0 : T ], θ). For example, Fig. 1.3 plots the result of a calcu-
lation of

x̂[0 : 250] = argmax
x[0:250]∈X 250

P (x[0 : 250] | y[0 : 250], θ).

Short Term Forecasting Given a model P∗|θ and a distribution of states at
time t, PX[t], one can calculate the conditional distribution of future states
or observations. For example, Fig. 1.4 plots the result of a calculation of

ŷ[250 : 500] = argmax
y[250:500]

P (y[250 : 500] | y[0 : 250], θ).

Simulation Given a model P∗|θ, one can characterize its long term behavior,
answering questions like “What is a hundred year flood?”. We often find
that models that we fit are not good for such long term extrapolation. For
example, the laser data that we described in the previous section seems
to come from a stable period five orbit, but the periodic orbit that the
trajectory in Fig. 1.3 approximates is linearly unstable. Thus the long
term behavior of our estimated model is very different from the actual
laser system.

Classification Given sample signals like y[0 : T ] and two possible signal sources,
h and d where P∗|h characterizes healthy units and P∗|d characterizes de-
fective units, one can can classify a unit on the basis of the likelihood
ratio

R(y[0 : T ]) =
P (y[0 : T ] | d)

P (y[0 : T ] | h)
.

If R(y[0 : T ]) is above some threshold, it is classified as defective.
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8 CHAPTER 1. INTRODUCTION

1.3 Discrete Hidden Markov Models

In this section we describe the simplest state space models: those that are
discrete in time, state, and observation. We begin with a couple of definitions.
Three random variables X[0], X[1], and X[2] constitute a Markov chain if

PX[2]|X[0],X[1] = PX[2]|X[1], (1.7)

which is equivalent to X[0] and X[2] being conditionally independent given X[1],
i.e.,

PX[2],X[0]|X[1] = PX[2]|X[1]PX[0]|X[1].

An indexed sequence of random variables X[0 : T ] is a Markov process if for
any t : 1 < t < T the variables before and after t are conditionally independent
given X[t], i.e.,

PX[0:t],X[t+1:T ]|X[t] = PX[0:t]|X[t]PX[t+1:T ]|X[t]. (1.8)

We will restrict our attention to time invariant models, i.e., those for which
the transition probabilities are constant over time. Begin by considering the
ordinary (unhidden) Markov model or process sketched in Fig. 1.5. The set of
states S = {u, v, w}, the probability distribution for the initial state

PS[0] =
[
1
3 ,

1
3 ,

1
3

]
, (1.9)

and the transition matrix

S[t + 1]
P (s[t + 1]|s[t]) u v w

u 0 1 0

S[t] v 0 1
2

1
2

w 1
2

1
2 0

(1.10)

define the model, and the model determines the probability of any sequence of
states s[0 : T ], which we write1 as PS[0:T ] (s[0 : T ]). For example we calculate
the probability that a sequence of 4 states has the values s[0 : 4] = (u, v, w, v),
(i.e., s[0] = u, s[1] = v, s[2] = w, and s[3] = v) as follows:

1We use upper case letters to denote random variables and P to denote probability dis-
tribution functions. A random variable used as subscript on P specifies that we mean the
distribution of that random variable. We can give P an argument to specify the value of the
distribution function at that value, e.g. PX(3) is the probability that the random variable X
has the value 3 and PX(x) is the probability that the random variable X has the value x. We
usually drop subscripts on P when the context or argument resolves ambiguity as to which
probability function we mean.
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P (s[0 : 4]) = P (s[0])

3∏
τ=1

P (s[τ ] | s[0 : τ − 1]) (1.11)

= P (s[0])

3∏
τ=1

P (s[τ ] | s[τ − 1]) (1.12)

P (u, v, w, v) = P (v | u, v, w) · P (w | u, v) · P (v | u) · P (u) (1.13)

= P (v | w) · P (w | v) · P (v | u) · P (u) (1.14)

=
1

2
· 1

2
· 1 · 1

3
=

1

12
. (1.15)

Applying Bayes rule
(
PA|BPB = PA,B

)
recursively, yields Eqn. (1.11) and

the special case, Eqn. (1.13). Equations (1.12) and (1.14) follow from Eqns. (1.11)
and (1.13) respectively by the Markov assumption, Eqn. (1.8). which says that
in determining the probability of the tth state given any sequence of previous
states only the (t− 1)th state is relevant.

A common exercise is to find a stationary probability distribution, i.e., given
a transition matrix T find the probability vector V (nonnegative entries that
sum to one) that satisfies

V T = V. (1.16)

If (1.16) holds for V = PS[0], then

PS[1] = PS[0]T = PS[0] = PS[t]∀t,

and in fact all probabilities are independent of shifts in time, i.e.,

PS[0:t] = PS[0+τ :t+τ ]∀(t, τ),

which is the definition of a stationary process. Quick calculations verify that
the initial probability and transition matrix in (1.9) and (1.10) do not satisfy
(1.16) but that the distribution V =

[
1
7 ,

4
7 ,

2
7

]
does. Although our example

is not a stationary stochastic process, it relaxes towards such a process in the
sense that

lim
t→∞

PS[t] = lim
t→∞

PS[0]T
t =

[
1
7 ,

4
7 ,

2
7

]
.

1
2

v

w
1

u 1
2

1
21

2

Figure 1.5: A Markov model

The important points about a Markov model also apply to hidden Markov
models, namely that:
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• The model determines the probability of arbitrary sequences of observa-
tions,

• and the assumptions about independence and time invariance permit spec-
ification of the model by a small number of parameters.

Now suppose, as sketched in Fig. 1.6, that when the system arrives in a state
that rather than observing the state directly, one observes a random variable
that depends on the state. The matrix that specifies the random map from
states to observations, i.e.:

Y
P (y | s) d e f

u 1 0 0

S v 0 1
3

2
3

w 0 2
3

1
3

combined with the distribution of initial states (1.9) and transition matrix (1.10)
specifies this hidden Markov model. The notion is that the underlying Markov
process chugs along unaware of the observations, and that when the process
arrives at each successive state s[t], an observation y[t] is produced in a fashion
that depends only on the state s[t].

1
2

v

w
1

u 1
2

1
21

2

d

1

1
3

e f
2
3

e
2
3

f

1
3

Figure 1.6: A hidden Markov model

Let us calculate the probability that a sequence of four observations from
this process would have the values y[0 : 4] = (d, e, f, e). As an intermediate
step we calculate P (y[0 : 4], s[0 : 4]) for the given observation sequence and all
possible state sequences. Then we add to obtain∑

s[0:4]

P (y[0 : 4], s[0 : 4]) = P (y[0 : 4]). (1.17)

It is convenient that the only state sequences that could have produced the
observation sequence are (u, v, v, v), (u, v, v, w), and (u, v, w, v). For any other
state sequence P (y[0 : 4], s[0 : 4]) = 0.
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s[0 : 4] P (s[0 : 4]) P (y[0 : 4] | s[0 : 4]) P (y[0 : 4], s[0 : 4])

uvvv
1

3
· 1 · 1

2
· 1

2
1 · 1

3
· 2

3
· 1

3

2

324
(1.18a)

uvvw
1

3
· 1 · 1

2
· 1

2
1 · 1

3
· 2

3
· 2

3

4

324
(1.18b)

uvwv
1

3
· 1 · 1

2
· 1

2
1 · 1

3
· 1

3
· 1

3

1

324
(1.18c)

Adding the fractions in the right hand column yields

P (d, e, f, e) =
7

324
.

Now examine this calculation more carefully beginning with a statement of
the model assumptions.

The state process is Markov: Given the current state, the probability of
the next state is independent of earlier states and observations, i.e.,

PS[t+1]|S[0:t+1],Y [0:t+1] = PS[t+1]|S[t]. (1.19)

The observations are conditionally independent given the states: Given
the current state, the probability of the current observation is independent
of states and observations at all earlier times, i.e.,

PY [t]|S[0:t+1],Y [0:t] = PY [t]|S[t]. (1.20)

Though the assumptions appear asymmetric in time, they are not2. From the
assumptions, one can derive that

The joint process is Markov:

PY [t+1:T ],S[t+1:T ]|Y [0:t+1],S[0:t+1] = PY [t+1:T ],S[t+1:T ]|Y [t],S[t]

2We often use the following facts about independence relations:

P (A | B,C) = P (A | B) ⇐⇒ P (A,C | B) = P (A | B) · P (C | B)

⇐⇒ P (C | A,B) = P (C | B) (1.21)

P (A | B,C,D) = P (A | B) ⇐⇒ P (A,C,D | B) = P (A | B) · P (C,D | B)

=⇒ P (A,C | B) = P (A | B) · P (C | B)

⇐⇒ P (A | B,C) = P (A | B). (1.22)

The first chain of implications, (1.21), says that if a process is Markov with time going forward,
then it is also Markov with time going backwards. The second chain, (1.22), says that if A
is conditionally independent of C and D given B, then A is conditionally independent of C
alone given B. By symmetry, A is also conditionally independent of D given B.
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Given S[t], Y [t] is conditionally independent of everything else:

PY [t]|Y [0:t],Y [t+1:T ],S[0:T ] = PY [t]|S[t]

Equations (1.19) and (1.20) are assumptions about conditional independence
relations. Figure 1.7 represents these relations as a Bayes net [11].

S[2] S[t] S[t + 1]

Y [1] Y [2] Y [t + 1]Y [t]

S[1]

Figure 1.7: Bayes net schematic for a hidden Markov model. The drawn edges
indicate the dependence and independence relations: Given S[t], Y [t] is condi-
tionally independent of everything else, and given S[t− 1], S[t + 1], and Y [t],
S[t] is conditionally independent of everything else.

Bayes rule and the assumptions justify

PY [0:T ],S[0:T ] = PS[0:T ] PY [0:T ]|S[0:T ],

PS[0:T ] = PS[0]

T−1∏
t=1

PS[t]|S[t−1] (1.23)

PY [0:T ]|S[0:T ] =

T−1∏
t=1

PY [t]|S[t] (1.24)

and we conclude

PY [0:T ],S[0:T ] = PS[0]

T−1∏
t=1

PS[t]|S[t−1]

T−1∏
t=0

PY [t]|S[t].

Since the state u produces the observation d exclusively and no other state
can produce d, the observation sequence (d, f, e, f) is only possible if the state
sequence begins with u and does not return to u. That constraint reduces
the number of possible state sequences to eight. The impossibility of state w
following itself, further constrains the possible state sequences to the three listed
in the calculations of Eqn. (1.18). One can verify the values for P (s[0 : T ]) and
P (y[0 : T ] | s[0 : T ]) in those calculations by applying Eqns. (1.23) and (1.24).

The calculation of P (y[0 : 4]) in Eqn. (1.18) is easy because, of the 34 = 81
conceivable state sequences, only three are consistent with the observations and
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model structure. In general however, if there are NS states and an observation
sequence with length T , then implementing

P (y[0 : T ]) =
∑
s[0:T ]

P (s[0 : T ], y[0 : T ])

naively requires order (NS)
T

calculations. If NS and T are as large as one

hundred, (NS)
T

is too many calculations for any conceivable computer.
There is a family of algorithms whose complexities are linear in the length

T that make it possible to use HMMs with interestingly long time series. The
details of these algorithms constitute Chapter 2; here we only list their names
and objectives. In these descriptions, we denote by θ the vector of parameters
that define an HMM, namely the state transition probabilities, the initial state
probabilities, and the conditional observation probabilities,

θ ≡


{
PS[t+1]|S[t] (s′ | s) ∀s, s′

}
,{

PS[0] (s) ∀s
}
,{

PY [t]|S[t] (yi | s′) ∀yi, s′
}
 .

The Viterbi Algorithm: Given a model θ and a sequence of observations
y[0 : T ], the Viterbi algorithm finds the most probable state sequence
ŝ[0 : T ], i.e.,

ŝ[0 : T ] = argmax
s[0:T ]

P (s[0 : T ] | y[0 : T ], θ) . (1.25)

The Baum-Welch Algorithm: (Often called the Forward Backward Algo-
rithm) Given a sequence of observations y[0 : T ] and an initial set of
model parameters θ0, a single pass of the Baum-Welch algorithm calcu-
lates a new set of parameters θ1 that has higher likelihood

P (y[0 : T ] | θ1) ≥ P (y[0 : T ] | θ0) . (1.26)

Equality can only occur at critical points of the likelihood function (where
∂θP (y[0 : T ] | θ) = 0). In generic cases, running many iterations of the
Baum-Welch algorithm yields a sequence θ[0 : n] that approaches a local
maximum of the likelihood.

The Forward Algorithm: For each time step t and each state s, the for-
ward algorithm calculates the conditional probability of being in state s at
time t given all of the observations up to that time, i.e., PS[t]|Y [0:t+1],θ (s | y[0 : t + 1], θ).
It also calculates P (y[t] | y[0 : t], θ), the conditional probability of each ob-
servation given previous observations. Using these terms it calculates the
probability of the entire data sequence given the model,

P (y[0 : T ] | θ) = P (y[0] | θ) ·
T−1∏
t=1

P (y[t] | y[0 : t], θ) .

The forward algorithm is the first phase of the Baum-Welch algorithm.
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1.3.1 Example: Quantized Lorenz Time Series

To illustrate these algorithms we have applied them to data that we synthesized
by numerically integrating the Lorenz system (Eqn. (1.1) with parameter values
r = 28, s = 10, and b = 8

3 ) and recording 40000 vectors x(τ) with a sampling
interval ∆τ = 0.15. Then we produced a sequence of integer valued observations
y400001 by binning x1 with boundaries at −10.0, 0.0 and 10.0. The result is that
for each integer 1 ≤ t ≤ 40000, x1[t · 0.15] yields y[t] ∈ {1, 2, 3, 4}. Figure 1.8
depicts the first few observations.

0 1 2 3 4 5 6

τ

−10

0

10

x
0
(τ

)

0 5 10 15 20 25 30 35 40

t

0

1

2

3

y
(t

)

Figure 1.8: Generating the observations y[0 : 40]. The curve in the upper plot
depicts the first component x1[τ ] of an orbit of the Lorenz system (Eqn. 1.1), and
the points marked with red dots indicate the values sampled with an interval
∆τ = 0.15. The points in the lower plot are the y[t] values quantized with
boundaries {−10.0, 0.0, 10.0}.

We randomly generated an HMM with twelve hidden states3 and 4 possible
observations, and then used 100iterations of the Baum-Welch algorithm to select
a set of parameters θ̂ with high likelihood for the data. Finally we used the
Viterbi algorithm to find the most likely state sequence

ŝ[0 : T ] = argmax
s[0:T ]

P
(
s[0 : T ] | y[0 : T ], θ̂

)
.

Although the plot of decoded state values in Fig. 1.9 is not very enlightening,

3We chose the number of hidden states to be twelve capriciously so that we could organize
Fig. 1.10 on a 4× 4 grid.
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we can illustrate that there is a relationship between the learned decoded states
and the original Lorenz system states by going back to the original data. For
each state s, we identify the set of integer times t such that the decoded state
is s, i.e., {t : ŝ[t] = s}, and then we find what the Lorenz system state was
at each of these times and plot that set of points. In the upper right box of
Fig. 1.10 we have plotted points in the original state space that correspond to
hidden state number one, i.e., the set of pairs {(x1[t ·∆τ ], x3[t ·∆τ ]) : ŝ[t] = 1}.
In searching for model parameters that give the observed data high likelihood,
the Baum-Welch algorithm “discovers” a discrete hidden state structure, and
Fig. 1.10 shows that the discrete hidden state structure is an approximation of
the continuous state space that generated the data.

0 20 40 60 80 100

t

0

2

4

6

8

10

12

s(
t)

Figure 1.9: A plot of the state sequence found by Viterbi decoding a quantized
time series from the Lorenz system. Here the number of the decoded state s[t]
is plotted against time t. Although it is hard to see any structure in the plot
because the numbers assigned to the states are not significant, Fig. 1.10 illus-
trates that the decoded states are closely related to positions in the generating
state space.

ToDo: Improve Fig. 1.11

1.3.2 Example: Hidden States as Parts of Speech

Hidden Markov models were developed for speech and text processing, and for
unscientific audiences, we find the application to language modeling the easiest
way to motivate HMMs. Consider for example the sentence, “The dog ate a
biscuit.” and its reduction to a sequence of parts of speech: article noun verb
article noun. By choosing different particular articles nouns and verbs and
placing them in the order specified by the sequence of parts of speech, we can
produce many other sentences such as, “An equation describes the dynamics.”
The parts of speech are like hidden states and the particular words are like
observations.

Rather than using a dictionary or our own knowledge to build a model of
language, here we describe the experiment of applying the Baum-Welch algo-
rithm to some sample text to create an HMM. We hope that the experiment will
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Figure 1.10: The relationship between the hidden states of an HMM and the
original coordinates of the Lorenz system. A state transition graph appears in
Figure 1.11.

Figure 1.11: Graph of transitions between states depicted in Figure 1.10 drawn
by the graphviz program.



i
i

“main” — 2025/2/21 — 13:28 — page 17 — #27 i
i

i
i

i
i

1.3. DISCRETE HIDDEN MARKOV MODELS 17

discover parts of speech. We fetched the fourth edition of A Book of Prefaces
by H. L. Mencken from www.gutenberg.org, fit an HMM with the Baum-Welch
algorithm, and decoded a state sequence with the Viterbi algorithm. We chose
a book of essays rather than a novel because we expected that it would not
have as much dialog. We feared that different speakers in a novel would require
different models.

The experiment consisted of the following steps:

Parse the text: We reduced the text to a sequence of tokens. Each token is a
word, a number, or a special character such as punctuation. We retained
distinctions between lower and upper case. The length of the resulting
sequence was 71459tokens, i.e., w[0 : T ] with T = 71459.

Identify unique tokens: There were 9998unique tokens of which 2,759 appear
in the text more than twice.

Create a map from tokens to rank: We sorted the tokens by the frequency
of their occurrence so that for the most frequent token w′, R(w′) = 1 and
for the most infrequent token, w̄, R(w̄) = 9998.

Map tokens to integers: We created a sequence of integers y[0 : T ] where
y[t] ∈ {0, . . . , 2850}∀t. If the token w[t] appeared in the text less than
three times, we set y[t] = 2850. Otherwise, we set y[t] to R(w[t]).

Train an HMM: Starting from a fifteen state model with random parameters,
we used 100 iterations of the Baum-Welch algorithm to obtain a trained
model.

Decode a sequence of states: By applying the Viterbi algorithm to y[0 : T ]
we obtained s[0 : T ] where s[t] ∈ {0, . . . , 11}.

Print the most frequent words for each state: For each state s, count the
number of times each integer y occurs, i.e., c(y, s) =

∑
t:s[t]=s δ(y, y[t]).

Then print the words corresponding the ten most frequently occurring
integers (excluding the special value y = 2850).

The results appear in Table 1.1.ToDo: Perhaps drop punctuation from table.

1.3.3 Remarks

One might imagine that HMMs are simply higher order Markov processes. For
example, consider the suggestion that the states depicted in Fig. 1.10 correspond
to sequential pairs of observations and that the model is a second order Markov
model that is characterized by PY [t+1]|Y [t],Y [t−1], the set of observation proba-
bilities conditioned on the two previous observations. Although the number of
unique sequential pairs y[t : t + 1] that occur in our data is in fact twelve, the
fact that some of the states in Fig. 1.10 straddle the quantization boundaries at
x = −10.0 and x = 10.0 belies the suggestion. In general, the class of HMMs
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Table 1.1: Words most frequently associated with each state. While we have
no interpretation for some of the states, the following interpretations of other
states are plausible.

1 – Nominative pronouns

2 – Prepositions

3 – Helping verbs

5 – Relative pronouns

9 – Articles

10 – Prepositions

11 – Nouns

13 – Nouns

15 – Adjectives

1 he it and I they He It there who we
2 to in as by with not at for on that
3 is was are has have had were may would not
4 . indeed vs Co S Sec U H Dreiser W
5 , ; that ” as and which : what but
6 - them it all him life course which what America
7 it be him more all not them out X have
8 . , ] ? ” ! ( : ; )
9 the a his an its ” their this that any

10 of and - in to for or as from with
11 The New American other moral English one Sister Jennie such
12 ” and The but [ In But as or that
13 book man work story way sense end sort artist books
14 York years Carrie hand Gerhardt men Titan out ) States
15 ” same first own Puritan whole new great very other

is more powerful than the class of simple Markov models in the sense that the
former includes the later but not vice versa.

Let us emphasize the following points about discrete HMMs:

1. Although the hidden process is first order Markov, the observation process
may not be a Markov process (of any order).

2. Any Markov model of any order can be represented by an HMM.

3. Even if the functions governing the dynamics and observations of a contin-
uous state space system are nonlinear, a discrete HMM can approximate
the system arbitrarily well4 by using large numbers of states NS and pos-
sible observation values NY .

4. For estimating model parameters, larger numbers of training data are
required as NS and NY are increased.

As an illustration of Point 1, consider the process depicted in Fig. 1.12,
which produces observation strings with runs of about seven a’s interspersed
with occasional b’s and c’s. In the observation stream, the b’s and c’s alternate

4By using a discrete HMM to approximate dynamics governed by a continuous function one
sacrifices the opportunity to exploit continuity. That sacrifice will degrade model performance
in many applications.
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no matter how many a’s fall in between. Such behavior can not be captured by
a simple Markov process of any order.

0.1

c

0.1

b

1.0

0.9
a

1.0

a
0.9

Figure 1.12: An HMM that cannot be represented by a Markov model of any
order. Consider the string of observations “b, a, a, . . . , a, a, a”. Since the previ-
ous non-”a” observation was “b” and the model will not produce another “b”
before it produces a “c”, the next observation can be either a “c” or another
“a”, but not a “b”. Because there is no limit on the number of consecutive “a’s”
that can appear, there is no limit on how far back in the observation sequence
you might have to look to know the probabilities of the next observation.

The possibility of long term memory makes state space models, e.g., HMMs,
more powerful than Markov models. That observation suggests that if there is
noise, then the delay vector reconstructions described in the chaos literature[39,
44, 29, 19] are suboptimal because they discard information from earlier obser-
vations that could be used to more accurately specify the state.
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Chapter 2

Basic Algorithms

In Section 1.3 we mentioned the Viterbi algorithm for finding the state sequence
that has the highest probability given an observation sequence, the forward al-
gorithm for calculating the probability of an observation sequence, and the
Baum-Welch algorithm for finding a parameter vector that at least locally max-
imizes the likelihood given an observation sequence. This chapter explains the
details of those algorithms. Much of the literature on the algorithms and much
of the available computer code uses Ferguson’s [16] notation. In particular, Ra-
biner’s [18] widely cited article follows Ferguson’s notation. Let us begin by
establishing our notation for the model parameters.

PS[t+1]|S[t](s | s̃) The probability that at time t+1 the system will be in state
s given that at time t it was in state s̃. Notice that the
parameter is independent of time t. Ferguson called these
parameters the A matrix with ai,j = PS[t+1]|S[t](sj | si).

PS[1](s) The probability that the system will start in state s at time
1. Ferguson used a to represent this vector of probabilities
with ai = PS[1] (si).

PY [t]|S[t](y | s) The probability that the observation value is y given that the
system is in state s. Ferguson used b to represent this with
bj(k) = PY [t]|S[t] (yk | sj).

θ The entire collection of parameters. For example, iteration of
the Baum-Welch algorithm produces a sequence of parameter
vectors θ[0 : N ] with P (y[0 : T ] | θ[n + 1]) ≥ P (y[0 : T ] | θ[n]) :
1 < n < N . Instead of θ, Ferguson used λ to denote the en-
tire collection of parameters.

21
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2.1 The Forward Algorithm

Given θ, the forward algorithm calculates P (y[0 : T ] | θ), and several useful
intermediate terms. Figure 2.1 sketches the basic recursion’s structure. Since
we are considering only one set of parameters, we will drop the dependence of
probabilities on θ from the notation for the remainder of this section. In the
example of Eqn. (1.18) we found that we could write the right hand terms of

P (y[0 : T ]) =
∑
s[0:T ]

P (y[0 : T ], s[0 : T ])

easily from the model assumptions. Unfortunately, the number of possible se-
quences s[0 : T ] is exponential in T , and it is not feasible to do the sum for even
modest lengths T .

The forward algorithm regroups the terms and produces the desired result
using order T calculations. For each time t : 1 < t ≤ T we calculate P (y[t] |
y[0 : t]), and in principle we can write

P (y[0 : T ]) = P (y[0])

T−1∏
t=1

P (y[t] | y[0 : t]).

However the values of P (y[t] | y[0 : t]) are typically small compared to 1, and
the product of many such terms is too small to be represented even in double
precision. Working with logarithms avoids underflow:

log (P (y[0 : T ])) = log (P (y[0])) +

T∑
t=1

log (P (y[t] | y[0 : t])) . (2.1)

For each time step we do the four calculations specified in the equations
below1. In these equations we use color highlighting to emphasize repeated
instances of the same quantity. The algorithm saves the following intermediate
results

α(t, s) ≡ PS[t]|Y [0:t+1] (s | y[0 : t + 1]) The updated state distribution

(2.2a)

γ[t] ≡ P (y[t] | y[0 : t]) The incremental likelihood. (2.2b)

In words2, α(t, s) is the conditional probability of being in state s at time t given
all of the past observations including y[t] and γ[t] is the conditional probability
of the observation at time t given all of the previous observations. We also

1On page 136 in Appendix C we present four lines of python code that implement these
four calculations.

2In Ferguson’s notation α(t, s) ≡ PS[t],Y [0:t] (s, y[0 : t]). Our notation differs from that by
a factor of P (y[0 : t]). Ferguson did not have notation for the term P (y[t] | y[0 : t]) which we
call γ, but he did use γ for quantities that we will denote by w in Eqns. (2.22) and (2.23).
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define two intermediate terms that are not saved

a(s, t) ≡ PS[t]|Y [0:t] (s | y[0 : t]) The state forecast (2.2c)

ã(s, t) ≡ PS[t],Y [t]|Y [0:t] (s, y[t] | y[0 : t]) The joint forecast. (2.2d)

To initialize the algorithm, one assigns

γ[0] = PY [0](y[0]) =
∑
s

PS[0](s)PY [t]|S[t](y[0] | s)

α(0, s) = PS[0]|Y [0](s | y[0]) =
PS[0](s)PY [t]|S[t](y[0] | s)

γ[0]
∀s ∈ S

where the distributions PS[0] and PY [t]|S[t] are model parameters. After initial-
ization, the algorithm iterates in a loop doing the following four calculations:

Forecast the Distribution of States Find for time t and each possible state
s the conditional probability, given the previous observations, of the state
being s at time t:

PS[t]|Y [0:t] (s | y[0 : t]) =
∑
s̃∈S

PS[t],S[t−1]|Y [0:t] (s, s̃ | y[0 : t]) (2.3a)

=
∑
s̃∈S

(
PS[t]|S[t−1],Y [0:t] (s | s̃, y[0 : t])

× PS[t−1]|Y [0:t] (s̃ | y[0 : t])
)

(2.3b)

=
∑
s̃∈S

PS[t]|S[t−1] (s | s̃) · α(t− 1, s̃). (2.3c)

We justify the operations as follows:

(2.3a) P (a) =
∑

b P (a, b)

(2.3b) P (a | b) · P (b) = P (a, b)

(2.3c) Assumption of Eqn. (1.19) on page 11: The state process is Markov

Forecast the Joint Probability of States and the Current Observation
Find for time t and each possible state s, the conditional probability, given
the previous observations, of the state being s and the observation being
y[t] (the value actually observed):

PS[t],Y [t]|Y [0:t] (s, y[t] | y[0 : t]) = PY [t]|S[t],Y [0:t] (y[t] | s, y[0 : t])

× PS[t]|Y [0:t] (s | y[0 : t]) (2.4a)

= PY [t]|S[t] (y[t] | s)
× PS[t]|Y [0:t] (s | y[0 : t]) . (2.4b)

We justify the equations as follows:
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(2.4a) P (a | b) · P (b) = P (a, b)

(2.4b) Assumption of Eqn. (1.20) on page 11: The observations are con-
ditionally independent given the states

Calculate the Conditional Probability of the Current Observation Find
for time t, the conditional probability, given the previous observations, of
the observation being y[t] (the observation actually observed):

P (y[t] | y[0 : t]) =
∑
s∈S

PS[t],Y [t]|Y [0:t] (s, y[t] | y[0 : t]) . (2.5)

Equation (2.5) is an application of P (a) =
∑

b P (a, b).

Calculate the Updated Distribution of States For each possible state s,
find the conditional probability of being in that state at time t given all
of the observations up to time t. Note that this differs from the first
calculation, (2.3), in that the conditioning event includes y[t]:

α(t, s) ≡ PS[t]|Y [0:t+1] (s | y[0 : t + 1]) (2.6a)

= PS[t],Y [t]|Y [0:t] (s, y[t] | y[0 : t]) ÷ P (y[t] | y[0 : t]) (2.6b)

Equation (2.6b) is an application of Bayes rule, i.e., P (a | b) · P (b) =
P (a, b).

Note that given the incremental likelihoods γ[t] the forward algorithm simply
alternates between multiplying a state distribution by a likelihood and multi-
plying the result by the matrix of state transition probabilities, i.e.,

a(t, s) =
∑
s̃

Ps[1]|s[0] (s | s̃)α(t− 1, s̃) (2.7a)

α(t, s) =
P (y[t]|s)a(t, s)

γ[t]
. (2.7b)

2.2 The Viterbi Algorithm

For some applications, one must estimate the sequence of states based on a
sequence of observations. The Viterbi algorithm finds the best sequence ŝ[1 :
T ] in the sense of maximizing the probability P (s[0 : T ] | y[0 : T ]). That is
equivalent to maximizing log (P (y[0 : T ], s[0 : T ])) because P (y[0 : T ]) is simply
a constant, and the log is monotonic, ie,

ŝ[0 : T ] ≡ argmax
s[0:T ]

P (s[0 : T ] | y[0 : T ])

= argmax
s[0:T ]

(P (s[0 : T ] | y[0 : T ]) · P (y[0 : T ]))

= argmax
s[0:T ]

log (P (y[0 : T ], s[0 : T ])) .
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As in the implementation of the forward algorithm, we use logs to avoid numer-
ical underflow. If we define log (P (y[0 : t], s[0 : t])) as the utility (negative cost)
of the state sequence s[0 : t] given the observation sequence y[0 : t], then the
Viterbi algorithm finds the maximum utility state sequence.

Initially one calculates log
(
PY [0],S[0] (y[0], s)

)
for each state s ∈ S. Then for

each successive time step t : 1 ≤ t < T one considers each state and determines
the best predecessor for that state and the utility of the best state sequence
ending in that state. The Viterbi algorithm and the forward algorithm have
similar structures (see Fig. 2.1 and Fig. 2.3). Roughly, the forward algorithm
does a sum over predecessor states, while the Viterbi algorithm finds a maximum
over predecessor states. We use the following notation and equations to describe
and justify the algorithm.

Notation:

s̃(t, s) The best s[0 : t+ 1] ending in s Of all length t + 1 state sequences
ending in s at time t, we define s̃(t, s) to be the sequence with the highest
joint probability with the data, i.e.,

s̃(t, s) ≡ argmax
s[0:t+1]:s[t]=s

P (y[0 : t + 1], s[0 : t + 1]) .

ν(t, s) The utility of the best s[0 : t+ 1] ending in s This is simply the
log of the joint probability of the data with the best state sequence defined
above, i.e.

ν(t, s) = log (P (y[0 : t + 1], s̃(t, s)))

s′(t, s) The immediate predecessor of state s in s̃(t, s) In other words,
given that the best sequence of length t + 1 that ends in sd is

s̃(t, sd) = [s[0] = sa, s[1] = sb, . . . , s[t− 1] = sc, s[t] = sd]

the best predecessor of s is the penultimate, i.e. at time t− 1, element of
that sequence, i.e. sc.

Equations:

Equations (2.8) and (2.9) summarize the Viterbi algorithm. When finally de-
ciphered, one finds Eqn. (2.8) is the vacuous statement that the best state
sequence ending in s at time t consists of s concatenated with the best sequence
ending in s′ at time t− 1, where s′ is the best predecessor of s.

s̃(t, s) = [s̃(t− 1, s′(t, s), s] (2.8)

Equation (2.9) says that the total utility of the best path of length t+1 to state
s is the utility of the best predecessor plus two terms, one that accounts for the
transition from the predecessor to s and one that accounts for the probability of
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state s producing the observation y[t]. From the model assumptions (Eqn. (1.19)
and Eqn. (1.20)) we find

PY [t+1],Y [0:t+1],S[t+1],S[0:t+1] (y[t + 1], y[0 : t + 1], s, s[0 : t + 1]) =

P (y[0 : t + 1], s[0 : t + 1]) · PS[t+1]|S[t] (s | s[t]) · PY [t+1]|S[t+1] (y[t] | s) .

Taking logs yields

ν(t + 1, s) = ν(t, s′(t, s)) + log
(
PS[t+1]|S[] (s | s′(t, s))

)
+ log

(
PY [t+1]|S[t+1] (y[t] | s)

)
.

(2.9)

Algorithm:

Following the steps in Fig. 2.2, note that the algorithm starts by assigning
a utility for each state using the first observation and then iterates forward
through time. For each time step t and each possible next state snext at time
t+ 1, the algorithm finds and records the best predecessor state sbest at time t.
Then the algorithm calculates the utility of snext at time t+1 on the basis of the
utility of the best predecessor, the conditional transition probability, and the
conditional observation probability. At the final time T the algorithm selects
the highest utility endpoint, i.e.,

ŝ[T − 1] = argmax
s

ν(T − 1, s),

and then backtracks through the optimal predecessor links to produce the entire
highest utility path.

2.3 The Baum-Welch Algorithm

Given an initial vector of model parameters θ for an HMM and a sequence
of observations y[0 : T ], iteration of the Baum-Welch algorithm produces a
sequence of parameter vectors θ[1 : N ] that almost always converges to a local
maximum of the likelihood function Pθ (y[0 : T ]). The algorithm was developed
by Baum and collaborators [26, 25] in the 1960’s at the Institute for Defense
Analysis in Princeton. In each iteration, it estimates the distribution of the
unobserved states and then maximizes the expected log likelihood with respect
to that estimate. Although Baum et al. limited their attention to HMMs, the
same kind of iteration works on other models that have unobserved variables.
In 1977, Dempster Laird and Rubin [28] called the general procedure the EM
algorithm.

The EM algorithm operates on models PY,S,θ with parameters θ for a mix of
data that is observed (Y) and data that is unobserved (S). (For our application,
Y is a sequence of observations Y [0 : T ] and S is a sequence of discrete hidden
states S[0 : T ].) The steps in the algorithm are:
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Initialize:
for each s

νnext(s) = log
(
PY [0],S[0] (y[0], s)

)
Iterate:

for t from 1 to T
Swap νnext ↔ νold
for each snext

# Find best predecessor
sbest = argmaxsold

(
νold(sold) + log

(
PS[t]|S[t−1] (snext | sold)

))
# Update ν
νnext(snext) = νold(sbest)

+ log
(
PS[t]|S[t−1] (snext | sbest)

)
+ log

(
PY [t]|S[t] (y[t] | snext)

)
# Update predecessor array
Predecessor[snext, t] = sbest

Backtrack:
s[0 : T ] = ŝ[0 : T ](s̄) , where s̄ = argmaxs νnext(s) at t = T − 1

Figure 2.2: Pseudocode for the Viterbi Algorithm
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1. Guess3 a starting value of θ[0], and set n = 0.

2. Choose θ[n + 1] to maximize an auxiliary function Q

θ[n + 1] = argmax
θ

Q(θ, θ[n]) (2.10)

where
Q(θ′, θ) ≡ EP (S|y,θ) (logP (y,S, θ′)) (2.11)

(Here the notation EP (S|y,θ)(F (S)) means the expected value of F (S) over
all values of S using the distribution P (S | y, θ).)

3. If not converged, go to 2 with n← n + 1.

We defer further discussion of the general EM algorithm to Section 2.5 and
now proceed to the details of its application to HMMs, i.e., the Baum-Welch
algorithm. The work of an iteration of the EM algorithm is done in step 2. To
apply it to an HMM, we first characterize P (s[0 : T ] | y[0 : T ], θ) by a combina-
tion of the forward algorithm that we already described in Section 2.1 and the
backward algorithm which we will describe in the next section. Using the char-
acterization of P (s[0 : T ] | y[0 : T ], θ), we describe the optimization specified by
Eqn. (2.10) in Section 2.3.2.

2.3.1 The Backward Algorithm

The backward algorithm is similar to the forward algorithm in structure and
complexity, but the terms are neither as easy to interpret nor as clearly use-
ful. After running both the forward algorithm and the backward algorithm,
one can calculate PS[t]|Y [0:T ] (s | y[0 : T ]), the conditional probability of be-
ing in any state s ∈ S at any time t : 1 ≤ t ≤ T given the entire se-
quence of observations. The forward algorithm provides the terms α(t, s) ≡
PS[t]|Y [0:t] (s | y[0 : t]) ∀(t, s). Thus the backward algorithm must provide terms,
call them β(t, s), with the values

β(t, s) =
PS[t]|Y [0:T ] (s | y[0 : T ])

α(t, s)
=

PS[t]|Y [0:T ] (s | y[0 : T ])

PS[t]|Y [0:t] (s | y[0 : t])
. (2.12)

Invoking Bayes rule and the model assumptions we find

β(t, s) =
PY [0:T ],S[t] (y[0 : T ], s) · P (y[0 : t])

PY [0:t],S[t] (y[0 : t], s) · P (y[0 : T ])
(2.13)

=
PY [t+1:T ]|Y [0:t],S[t] (y[t + 1 : T ] | y[0 : t], s)

P (y[t + 1 : T ] | y[0 : t])
(2.14)

=
PY [t+1:T ]|S[t] (y[t + 1 : T ] | s)

P (y[t + 1 : T ] | y[0 : t])
. (2.15)

3Although a symmetric model in which the transition probability from each state to every
other state is the same and the observation probabilities are all uniform is easy to describe,
such a model is a bad choice for θ[1] because the optimization procedure will not break the
symmetry of the states.
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(Note that if α(t, s) = 0, Eqn. (2.12) is undefined, but we can nonetheless
implement Eqn. (2.15).)

The algorithm starts at the final time T with β set to one4 for each state,
β(t, s) = 1, ∀s ∈ S, and solves for β at earlier times with the following recursion
that goes backwards through time:

β(t− 1, s̃) =
∑
s∈S

β(t, s)
PY [t]|S[t] (y[t] | s) · PS[t]|S[t−1] (s | s̃)

γ[t]
(2.16)

Note that γ[t] ≡ P (y[t] | y[0 : t]) is calculated by the forward algorithm and that
the terms in the numerator are model parameters. We justify Eqn. (2.16) by
using Eqn. (2.15)

β(t− 1, s̃) ≡ PY [t:T ]|S[t−1] (y[t : T ] | s̃)
P (y[t : T ] | y[0 : t])

(2.17)

=

∑
s∈S PY [t:T ],S[t]|S[t−1] (y[t : T ], s | s̃)

P (y[t : T ] | y[0 : t])
. (2.18)

Next, factor each term in the numerator of Eqn. (2.18) using Bayes rule twice
then apply the model assumptions and the expression for β(t, s) from Eqn. (2.15):

PY [t:T ],S[t]|S[t−1] (y[t : T ], s | s̃)
= PY [t+1:T ]|Y [t],S[t],S[t−1] (y[t + 1 : T ] | y[t], s, s̃)

· PY [t]|S[t],S[t−1] (y[t] | s, s̃) · PS[t]|S[t−1] (s | s̃)
= PY [t+1:T ]|S[t] (y[t + 1 : T ] | s) · PY [t]|S[t] (y[t] | s) · PS[t]|S[t−1] (s | s̃)
= β(t, s) · P (y[t + 1 : T ] | y[0 : t]) · PY [t]|S[t] (y[t] | s) · PS[t]|S[t−1] (s | s̃)

Similarly, simplify the denominator of Eqn. (2.18) using Bayes rule:

P (y[t : T ] | y[0 : t]) = P (y[t + 1 : T ] | y[0 : t]) · P (y[t] | y[0 : t])

Finally by substituting these values into the fraction of (2.18), we verify the
recursion (2.16)

β(t− 1, s̃) =

∑
s∈S β(t, s) · P (y[t + 1 : T ] | y[0 : t]) · PY [t]|S[t] (y[t] | s) · PS[t]|S[t−1] (s | s̃)

P (y[t + 1 : T ] | y[0 : t]) · P (y[t] | y[0 : t])

(2.19)

=
∑
s∈S

β(t, s)
PY [t]|S[t] (y[t] | s) · PS[t]|S[t−1] (s | s̃)

γ[t]
. (2.20)

By introducing the intermediate quantity b(t, s) we can break (2.20) into the

4From the premises that α(t, s)β(t, s) = PS[t]|Y [0:T ] (s | y[0 : T ]) and α(t, s) ≡
PS(T )|Y [0:T ] (s | y[0 : T ]), we conclude that β(t, s) = 1 ∀s.



i
i

“main” — 2025/2/21 — 13:28 — page 32 — #42 i
i

i
i

i
i

32 CHAPTER 2. BASIC ALGORITHMS

two steps

b(s, t) =
β(t, s)y[t]

γ[t]
(2.21a)

β(t− 1, s̃) =
∑
s∈S

b(s, t)PS[1]|S[0] (s | s̃) , (2.21b)

which clarifies that, aside from normalization, the backward algorithm like the
forward algorithm alternates between multiplying a state distribution by an ob-
servation likelihood and then multiplying the result by the transition probability
matrix or its transpose.

2.3.2 Weights and Reestimation

Each pass of the Baum-Welch algorithm consists of the following steps: Run
the forward algorithm described in Section 2.1 to calculate the values of α(t, s)
and γ(t) for each time t ∈ [0, . . . , T −1] and each state s ∈ S; Run the backward
algorithm described in Section 2.3.1 to calculate the values of β(t, s̃); Reestimate
the model parameters using the formulas in Table 2.1.

We write the reestimation formulas in terms of weights which express the
conditional probability of being in specific states at specific times given the
observed data y[0 : T ]. We denote the conditional probability of being in state
s at time t given all of the data by

w(t, s) ≡ PS[t]|Y [0:T ] (s | y[0 : T ]) , (2.22)

and we denote the conditional probability, given all of the data, of being in state
s at time t and being in state s̃ at time t + 1 by

w̃(t, s̃, s) ≡ PS[t+1],S[t]|Y [0:T ] (s̃, s | y[0 : T ]) . (2.23)

Table 2.1 (page 33) summarizes the formulas for the updated model parameters
after one pass of the Baum-Welch algorithm.

To derive reestimation formulas for PS(1) and PY [t]|S[t] we will consider a
sum over all possible state sequences s[0 : T ], i.e.,

w(t, s) =
∑

s[0:T ]:s[t]=s

P (s[0 : T ] | y[0 : T ]) . (2.24)

Since this is virtually unimplementable, the actual algorithm uses

w(t, s) = α(t, s)β(t, s). (2.25)

In fact, in Eqn. (2.12), we chose the expression for β to make Eqn. (2.25) true.
Similarly, we will derive the reestimation formula for PS[t+1]|S[t] using

w̃(t, s̃, s) =
∑

s[0:T ]:s[t+1]=s̃,
s[t]=s

P (s[0 : T ] | y[0 : T ]) , (2.26)
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but in the algorithm we use

w̃(t, s̃, s) =
α(t, s) · PS[t+1]|S[t] (s̃ | s) · PY [t+1]|S[t+1] (y[t + 1] | s̃) · β(t + 1, s̃)

γ[t + 1]
.

(2.27)
One can verify Eqn. (2.27) using the model assumptions, the definitions of α,
β, and γ, and Bayes rule.

Reestimation

With Eqns. (2.25) and (2.27) for w(t, i) and w̃(t, s̃, s) in terms of known quanti-
ties (α, β, γ, y[0 : T ], and the old model parameters θ[n]), we are prepared to use
the formulas in Table 2.1 to calculate new estimates of the model parameters,
θ[n + 1] with higher likelihood.

Table 2.1: Summary of reestimation formulas.
Note that formulas for w(t, s) and w̃(t, s̃, s) appear in
Eqns. (2.25) and (2.27) respectively.

Description Expression New Value

Initial State Prob. PS[0]|θ[n+1] (s | θ[n+ 1]) w(0, s)

State Transition Prob. PS[t+1]|S[t],θ[n+1] (s̃ | s, θ[n+ 1])
∑T−1

t=1
w̃(t,s̃,s)∑

s′∈S
∑T−1

t=1
w̃(t,s′,s)

Cond. Observation Prob. PY [t]|S[t],θ[n+1] (y | s, θ[n+ 1])
∑

t:y[t]=y w(t,s)∑
t w(t,s)

To derive the formulas in Table 2.1, start with Step 2 of the EM algorithm
(see Eqn. (2.11)) which is to maximize the auxiliary function

Q(θ′, θ) ≡ EP (S|y),θ (logP (y,S | θ′))

with respect to θ′. For an HMM, substitute the sequence of hidden states
s[0 : T ] for S and the sequence of observations y[0 : T ] for y. Note that the joint
probability of a state sequence s[0 : T ] and the observation sequence y[0 : T ] is

P (s[0 : T ], y[0 : T ]) = PS[0] (s[0])·
T−1∏
t=1

PS[1]|S[0] (s[t] | s[t− 1])·
T−1∏
t=0

PY [0]|S[0] (y[t] | s[t]) ,

or equivalently,

logP (y[0 : T ], s[0 : T ]) = logPS[0] (s[0]) +

T−1∑
t=1

logPS[1]|S[0] (s[t] | s[t− 1])

+

T−1∑
t=0

logPY [0]|S[0] (y[t] | s[t]) .
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We can optimize Q by breaking it into a sum in which each of the model param-
eters only appears in one of the terms and then optimizing each of the terms
independently:

Q(θ′, θ) =
∑

s[0:T ]∈ST

(P (s[0 : T ] | y[0 : T ], θ) logP (s[0 : T ], y[0 : T ], θ′)) (2.28)

≡ Qinitial(θ
′, θ) + Qtransition(θ′, θ) + Qobservation(θ′, θ), (2.29)

where

Qinitial(θ
′, θ) ≡

∑
s[0:T ]∈ST

(
P (s[0 : T ] | y[0 : T ], θ) logPS[0]|θ′ (s[0] | θ′)

)
(2.30)

Qtransition(θ′, θ) ≡
∑

s[0:T ]∈ST

(
P (s[0 : T ] | y[0 : T ], θ)

T−1∑
t=1

logPS[1]|S[0],θ′ (s[t] | s[t− 1], θ′)

)
(2.31)

Qobservation(θ′, θ) ≡
∑

s[0:T ]∈ST

(
P (s[0 : T ] | y[0 : T ], θ)

T∑
t=1

logPY [0]|S[0],θ′ (y[t] | s[t], θ′)
)

(2.32)

To simplify the appearance of expressions as we optimize Q, we introduce
notation for logs of parameters

Linitial(i) ≡ logPS[0]|θ′ (i | θ′) (2.33)

Ltransition(i, j) ≡ logPS[1]|S[0],θ′(i | j, θ′) (2.34)

Lobservation(y, i) ≡ logPY [0]|S[0],θ′ (y | i, θ′) . (2.35)

Now to optimize Qinitial write Eqn. (2.30) as

Qinitial(θ
′, θ) =

∑
s[0:T ]∈ST

P (s[0 : T ] | y[0 : T ], θ)Linitial(s[0]) (2.36)

=
∑
s∈S

Linitial(s)
∑

s[0:T ]:s[0]=s

P (s[0 : T ] | y[0 : T ], θ) (2.37)

=
∑
s

Linitial(s)PS[0]|Y [0:T ],θ (s | y[0 : T ], θ) see Eqn. (2.24)

(2.38)

=
∑
s

Linitial(s)w(0, s) (2.39)

We wish to find the set {Linitial(s)} that maximizes Qinitial(θ
′, θ) subject to the

constraint ∑
s

eLinitial(s) ≡
∑
s

PS[0]|θ̂

(
s | θ̂

)
= 1.
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The method of Lagrange multipliers yields

Linitial(s) = logw(0, s) ∀s, (2.40)

ie, the new estimates of the initial probabilities are

PS[0]|θ[n+1] (s | θ[n + 1]) = w(0, s). (2.41)

To derive new estimates of the state transition probabilities, write

Qtransition(θ′, θ) =
∑

s[0:T ]∈ST

P (s[0 : T ] | y[0 : T ], θ)

T−1∑
t=1

Ltransition(s[t− 1], s[t])

(2.42)

=
∑
s,s̃

Ltransition(s, s̃)

T−1∑
t=1

∑
s[0:T ]:s[t]=s̃,

s[t−1]=s

P (s[0 : T ] | y[0 : T ], θ)

(2.43)

=
∑
s,s̃

Ltransition(s, s̃)

T−1∑
t=1

w̃(t, s̃, s). (2.44)

Optimization yields

PS[1]|S[0],θ[n+1] (s̃ | s, θ[n + 1]) =

∑T−1
t=1 w̃(t, s̃, s)∑

s′
∑T−1

t=1 w̃(t, s′, s)
. (2.45)

Similarly, we derive the new estimates of the conditional observation prob-
abilities from

Qobservation(θ′, θ) =
∑

s[0:T ]∈ST

P (s[0 : T ] | y[0 : T ], θ)

T−1∑
t=1

Lobservation(y[t], s[t])

(2.46)

=
∑

y∈Y,s∈S
Lobservation(y, s)

∑
t:y[t]=y

∑
s[0:T ]:s[t]=s

P (s[0 : T ] | y[0 : T ], θ)

(2.47)

=
∑
y,s

Lobservation(y, s)
∑

t:y[t]=y

w(t, s). (2.48)

Optimization yields

PY [t]|S[t],θ[n+1] (y | s, θ[n + 1]) =

∑
t:y[t]=y w(t, s)∑T−1
t=1 w(t, s)

. (2.49)
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Notation:

θ[n] is the model, or equivalently the set of parameters, after n iterations
of the Baum-Welch algorithm.

αn is the set of conditional state probabilities calculated on the basis of
the nth model and the data y[0 : T ]. See Eqns. (2.2a) and (2.6).

αn ≡
{
PS(t)|Y [0:t],θ[n] (s | y[0 : t], θ[n]) : ∀s ∈ S & 0 ≤ t < T

}
βn is a set of values calculated on the basis of the nth model θ[n] and
the data y[0 : T ]. See Eqns. (2.15) and (2.16).

βn ≡
{
PY [t+1:T ]|S[t] (y[t + 1 : T ] | s)

P (y[t + 1 : T ] | y[0 : t])
: ∀s ∈ S & 0 ≤ t < T

}
γn is the set of conditional observation probabilities calculated on the
basis of the nth model θ[n] and the data y[0 : T ]. See Eqns. (2.2b) and
(2.5).

γn ≡ {P (y[t] | y[0 : t], θ[n]) : 0 ≤ t < T}

Initialize:
Set n = 0 and choose θ[0]

Iterate:
(αn,γn)← forward(y[0 : T ], θ[n]) See Section 2.1 page 22
βn ← backward(γn, y[0 : T ], θ[n]) See Section 2.3.1 page 30
θ[n + 1]← reestimate (y[0 : T ],αn,βn,γn, θ[n]) See Table 2.1 page 33
n← n + 1
Test for completion

Figure 2.4: Summary and pseudo-code for optimizing model parameters by
iterating the Baum-Welch algorithm.
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2.4 Remarks

2.4.1 MAP Sequence of States or Sequence of MAP States?

Consider the difference between the sequence of maximum a posteriori states
and the maximum a posteriori sequence of states. The maximum a posteriori
state at a particular time t is the best guess for where the system was at that
time given all of the observations, i.e. ŝ[t] = argmaxs′ P (s′[t] | y[0 : T ]) =
argmaxs′ α(t, s′)β(t, s′) (see (2.22) – (2.25)). While it seems reasonable that a
sequence of such guesses would constitute a good guess for the entire trajectory,
it is not an optimal trajectory estimate. In fact, as the following example
demonstrates, such a trajectory may even be impossible.

Consider the HMM drawn in Fig. 2.5 and the sequence of observations y[0 :
6] = (a, b, b, b, b, c). Any sequence of states that is consistent with y[0 : 6] must
begin in e, end in g, and pass through state f exactly once. The only unknown
remaining is the time at which the system was in state f . Here is a tabulation
of the four possible state sequences:

s[1] s[2] s[3] s[4] s[5] s[6] P (y[0 : 6], s[0 : 6])/z P (s[0 : 6] | y[0 : 6])
e e e e f g 0.93 0.30
e e e f g g 0.92 · 0.8 0.26
e e f e g g 0.9 · 0.82 0.23
e f g g g g 0.83 0.21

In the table, the term z represents the factors that are common in P (y[0 : 6], s[0 :
6]) for all of the possible state sequences. Only the factors that are different
appear in the seventh column. The largest entry in the last column, where only
two significant figures appear, is 0.30 which corresponds to the MAP estimate:
ŝ[1 : 6] = (e, e, e, e, f, g, ).

h

ge

f

0.9 0.9

0.9

1.00.1

1.0

0.1 0.8 0.2

a
b

b c
b

1.0

0.11.0

d

Figure 2.5: HMM used to illustrate that the maximum a posteriori sequence of
states is not the same as the sequence of maximum a posteriori states.

The next table displays the values of P (s[t] | y[0 : 6]), the a posteriori
probability for the three possible states:
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t
P (s[t] | y[0 : 6]) 1 2 3 4 5 6

e 1.0 0.79 0.56 0.30 0 0
s f 0 0.21 0.23 0.26 0.30 0

g 0 0 0.21 0.44 0.70 1.0

The table quantifies the intuition that the a posteriori probability starts in state
e at time t = 1 and sort of diffuses completely over to state g by time t = 6.
Notice that although all of the probability passes through state f , at no time is
it the most probable state. Thus the sequence of maximum a posteriori states is
e, e, e, g, g, g which is an impossible sequence. On the other hand, the maximum
a posteriori sequence of states, e, e, e, e, f, g, is entirely plausible.

2.4.2 Training on Multiple Segments

Simple modifications to code for the Baum-Welch algorithm enable it to train on
data that consists of a collection of independent segments ỹ ≡ {y0,y1, . . . ,yn−1}
where yk = yk[0 : Tk]. In particular for each iteration, one should:

• Run the forward and backward algorithms on each segment yk to calculate
αk and βk

• Create α and β by concatenating αk ∀k and βk ∀k respectively.

• Reestimate all model parameters by applying the formulas in Table 2.1 to
the concatenated α, β, and ỹ.

• Modify the reestimated initial state probabilities using

PS[0]|θ[m+1] (s | θ[m + 1]) =
1

n

n−1∑
k=0

αk(s, 0)βk(0, s)

2.4.3 Probabilities of the initial state

Using the procedure of the previous section for a few independent observation se-
quences with several iterations of the Baum-Welch algorithm produces a model
in which the estimates of the probabilities of the initial states, PS[0] (s) ∀s ∈ S,
reflect the characteristics at the beginning of the given sequences. Those esti-
mates are appropriate if all observation sequences come from state sequences
that start in a similar fashion. Such models are not stationary. To accommo-
date the many applications in which we wish to model the state dynamics as
stationary, we also calculate stationary initial state probability estimates using

PS[0](stationary) (s) =

∑
t w(t, i)∑
j,t w(t, j)

(2.50)



i
i

“main” — 2025/2/21 — 13:28 — page 39 — #49 i
i

i
i

i
i

2.4. REMARKS 39

100 101 102

n

−1.4
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−1.0

−0.8

−0.6
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T 1
|θ

(n
))

T

Figure 2.6: Convergence of the Baum-Welch algorithm. Here we have plotted
the log likelihood per step as a function of the number of iterations n of the
Baum-Welch algorithm for five different initial models θ[0]. We used the same
sequence of observations y[0 : T ] that we used for Fig. 1.10, and we used different
seeds for a random number generator to make the five initial models. Note
the following characteristics: The five different initial models all converge to
different models with different likelihoods; The curves intersect each other as
some models improve more with training than others; Convergence is difficult
to determine because some curves seem to have converged for many iterations
and later rise significantly.

2.4.4 Maximizing likelihood over unrealistic classes

We often fit simple hidden Markov models to data that come from systems that
have complicated continuous state spaces. For example, in Chapter 6 we fit
models with roughly 10 states to electrocardiograms even though we believe
that partial differential equations over vector fields better describe physiological
dynamics that affect the signal. By fitting unrealistically simple models we
reduce the variance of the parameter estimates at the expense of having less
accurate models and parameters that are harder to interpret. It is a version of
the classic bias-variance trade-off.

2.4.5 Multiple Local Maxima

The Baum-Welch algorithm generically converges to a local maximum of the like-
lihood function. For example, we obtained the model used to generate Fig. 1.10
by iterating the Baum-Welch algorithm on an initial model with random pa-
rameters. By re-running the experiment with five different seeds for the random
number generator, we obtained the five different results that appear in Fig. 2.6.
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2.4.6 Disappearing Transitions

For some observation sequences y[0 : T ] and initial models, multiple iterations
of the Baum-Welch algorithm leads to state transition probabilities that are too
small to be represented in double precision. In our implementation of the Baum-
Welch algorithm, we set those transition probabilities to zero. Such pruning:

• Prevents numerical underflow exceptions

• Simplifies the models

• Lets the code that process the models run faster when we use sparse
matrices

There are methods (see for example [38]) for addressing situations in which
one believes that some transitions should be allowed by a model even though
maximizing the likelihood by the Baum-Welch algorithm would numerically
drive their probability to zero.

2.4.7 Bayesian Estimates Instead of Point Estimates

A Bayesian parameter estimation scheme begins with an a priori distribution
Pθ that characterizes knowledge about what values are possible and then uses
Bayes rule to combine that knowledge with observed data y to calculate an
a posteriori distribution of parameters Pθ|y. We don’t really believe that the
maximum likelihood estimate (MLE) produced by the Baum-Welch algorithm
is precisely the one true answer. It is what Bayesians call a point estimate.
Parameter values near the MLE are just as plausible given the data. A proper
Bayesian procedure characterizes the plausibility of other parameter values with
an a posteriori distribution. In the next chapter, we present a variant on the
Baum-Welch algorithm that uses a prior distribution on parameter values and
produces an estimate that maximizes the a posteriori probability, i.e., a MAP
estimate. However, like the MLE, the MAP is a point estimate. Neither does a
good job of characterizing the set of plausible parameters.

In addition to yielding only a point estimate, the Baum-Welch algorithm is
indirect in that each pass optimizes an auxiliary function rather than optimizing
the likelihood, and it converges to local maxima. A Bayesian Markov chain
Monte Carlo approach would address all of these objections at the expense of
being slow.

Although others have obtained Bayesian a posteriori parameter distributions
for HMMs using Markov chain Monte Carlo and variational Bayes procedures
(see for example [41] and [23]), we will restrict our attention to point estimates
from the Baum-Welch algorithm and simple variations.

2.5 The EM algorithm

In Section 2.3, we described the Baum-Welch algorithm for finding parameters
of an HMM that maximize the likelihood, and we noted that the Baum-Welch al-
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gorithm is a special case of the EM algorithm. Here, we examine the general EM
algorithm in more detail. Readers willing to accept the Baum-Welch algorithm
without further discussion of Eqn. 2.10 should skip this section. Dempster Laird
and Rubin[28] coined the term EM algorithm in 1977. More recent treatments
include Redner and Walker[42], McLachlan and Krishnan[10] and Watanabe
and Yamaguchi[15]. Recall that the algorithm operates on models PY,S,θ with Want 2024 recent
parameters θ for a mix of data that is observed (Y) and data that is unobserved
(S) and that the steps in the algorithm are:

1. Guess a starting value of θ[0], and set n = 0.

2. Choose θ[n + 1] to maximize an auxiliary function Q

θ[n + 1] = argmax
θ

Q(θ, θ[n]) (2.51)

where
Q(θ′, θ) ≡ EP (S|y,θ) (logP (y,S | θ′)) (2.52)

3. Increment n.

4. If not converged, go to 2.

Step 2 does all of the work. Note that if the unobserved data (S) is dis-
crete, then the auxiliary function (Q) is EP (S|y,θ) (logP (y,S | θ′)) =

∑
s P (s |

y, θ) (logP (y, s |′θ)). Although Dempster Laird and Rubin [28] called the char-
acterization of P (S | y, θ) the estimation step and the optimization of Q(θ, θ[n])
over θ the maximization step, the steps are now referred to as expectation and
maximization.

The advantages of the EM algorithm are that it is easy to implement and
it monotonically increases the likelihood. These often outweigh its slow con-
vergence and the fact that it calculates neither the second derivative of the
likelihood function nor any other indication of the reliability of the results it re-
ports. Proving monotonicity is simple. If the likelihood is bounded, convergence
follows directly from monotonicity, but convergence of the parameters does not
follow. Also, the likelihood might converge to a local maximum. Papers by
Baum et al.[26], Dempster, Laird, and Rubin[28], and Wu[47] analyze the is-
sues. In the next two subsections we touch on some of the ideas and analyze an
example.

2.5.1 Monotonicity

Denoting the log likelihood of the observed data given the model θ′ as

L(θ′) ≡ log (P (y | θ′))

and the cross entropy of the unobserved data with respect to a model θ′ given
a model θ as

H(θ, θ′) ≡ −EP (S|y,θ) (logP (S | y, θ′)) ,
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we can write the auxiliary function as

Q(θ′, θ) ≡ EP (S|y,θ) (logP (S,y | θ′))
= EP (S|y,θ) (logP (S | y, θ′) + log (P (y | θ′)))
= L(θ′)−H(θ, θ′)

or
L(θ′) = Q(θ′, θ) + H(θ, θ′). (2.53)

The fact that
H(θ, θ′) ≥ H(θ, θ)∀θ′ (2.54)

with equality iff
P (s | y, θ′) = P (s | y, θ) ∀s

is called the Gibbs Inequality5. It is a consequence of Jensen’s inequality.
Given the model θ[n] after n iterations of the EM algorithm, we can write

L(θ[n]) = Q(θ[n], θ[n]) + H(θ[n], θ[n]). (2.55)

If for some other model θ′

Q(θ′, θ[n]) > Q(θ[n], θ[n]), (2.56)

then the Gibbs inequality implies H(θ[n], θ′) ≥ H(θ[n], θ[n]) and consequently,
L(θ′) > L(θ[n]). Monotonicity of the log function further implies

P (y | θ′) > P (y | θ[n]) .

Since the EM algorithm requires the inequality in (2.56), for θ′ = θ[n + 1], the
algorithm monotonically increases the likelihood.

2.5.2 Convergence

Here we analyze how the Baum-Welch algorithm converges in a simple example.
Some of the analysis applies to EM algorithms in general. An EM algorithm
operates on Θ, a set of allowed parameter vectors with a map T : Θ 7→ Θ that
implements an iteration of the algorithm, i.e.,

θ[n + 1] = T (θ[n]).

Wu[47] has considered convergence of EM algorithms generally and observed
that more than one value of θ′ may maximize Q(θ′, θ). Consequently he con-
sidered T to be a point to set map. However, there are many model classes
–including all of the models that we describe in this book– for which one can
write algorithms that calculate a unique T (θ).

5While many statisticians attribute this inequality to Kullback and Leibler[36], it appears
earlier in chapter XI Theorem II of Gibbs[3].
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If there is a bound6 P̄ on P (y | θ) with

P (y | θ) ≤ P̄ ∀θ ∈ Θ

then the monotonicity of the sequence (P (y | θ[1]), P (y | θ[2]), P (y | θ[3]), . . .)
and the bounded convergence theorem ensures that the limit P ∗ ≡ limn→∞ P (y | θ[n])
exists. The bounded convergence theorem does not promise that P ∗ = supθ∈Θ P (y | θ)
or that it is even a local maximum, nor does it promise that θ∗ ≡ limn→∞ θ[n]
exists. However, in the following example, iterations of T converge to a lo-
cal maximum7 of the likelihood, and we believe it provides good intuition for
behavior of the Baum-Welch algorithm.

Consider the model defined by the initial state probability

PS[0] =
[
1
2 ,

1
2

]
, (2.57a)

the state transition probability

S[t + 1]
P (s[t + 1]|s[t]) 0 1

0 .9 .1

S[t] 1 u 1− u,

(2.57b)

and the observation probability

Y [t]
P (y[t]|s[t]) 0 1

0 .9 .1

S[t] 1 v 1− v.

(2.57c)

A schematic of the model appears in Figure 2.7. We set

θtrue ≡ (utrue, vtrue) = (0.1, 0.2) (2.58)

and simulated the model for 10,000 time steps to produce y[0 : 10, 000]. Then
starting with

θinitial ≡ (uinitial, vinitial) = (0.001, 0.01) (2.59)

we ran fifty iterations of the Baum-Welch algorithm to calculate an estimate of
θ∗. During training we held all the model parameters fixed at their true values
except u and v .

Figure 2.8 illustrates the trajectory in the parameter space, U × V , of the
first eleven training iterations. The eigenvectors and eigenvalues that appear
in the lower plot of that figure are from a spectral decomposition of the second
term in the Taylor series expansion T near θ∗, ie,

T (θ) = θ∗ + D(θ − θ∗) + Remainder.

6See Section 3.1.2 for an example involving probability densities with no such bound. For
discrete y, however the bound P (y | θ) ≤ 1 holds.

7While Wu[47] provides an example of a trajectory that converges to a saddle point of the
likelihood, we argue in the appendix that such trajectories are not generic.
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Figure 2.7: A schematic of the HMM defined by Equations (2.57). We chose to
have only two free parameters in the model, u and v, so that we can illustrate
the convergence of training with 2-d plots as we have in Figure 2.8.

In Appendix B on page 132 we derive

D ≡ ∂T (θ)

∂θ

∣∣∣∣
θ∗

=
[
Jy + IS|y

]−1
IS|y.

To evaluate D one can obtain the term IS|y from P (s | y, θ) which comes from
the forward and backwards algorithms. On the other hand, we find

Jy ≡ −
∂2

∂θ2
log (P (y | θ) ,

which is called the observed information, more difficult to calculate. For the
figure, we approximated Jy with numerically expensive calculations.

Notice that the trajectory quickly lines up with the eigenvector of D whose
eigenvalue is closest to 1 and then decays exponentially towards θ∗. We believe
that behavior is typical. In the appendix we also show that if all of the eigenval-
ues of Jy are positive8 then T is linearly stable, i.e., |λ| < 1 for all eigenvalues
of D. If one could cheaply estimate the spectral decomposition of D, one could
speed up the convergence of HMM training.

8Positive eigenvalues implies that θ∗ is a local maximum.
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Figure 2.8: An illustration of the EM algorithm converging to a maximum
likelihood estimate θ∗. The data y[0 : 10, 000] come from simulating the HMM
described in (2.57) and Figure 2.7. The first eleven estimates of θ ≡ (u, v) in the
training sequence appear as a blue trajectory in both plots. In the upper plot
level sets of the log-likelihood, L(θ′) = log (P (y[0 : 10, 000] | θ′)), and auxiliary
function, Q(θ′, θ[n]) appear for every third value of n. Notice that every value of
θ′ except θ[n] on the level set of Q(θ′, θ[n]) is inside of (and therefore has higher
likelihood) the level set of L. The eigenvectors depicted in the lower plot are from

a spectral decomposition of the derivative ∂T (θ)
∂θ

∣∣∣
θ∗

given by Equation (B.24)

on page 132 of the appendix. The lengths of the vectors are proportional to the
logs of the eigenvalues.
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Chapter 3

Variants and
Generalizations

Hidden Markov models are special cases of discrete time state space models
characterized by a state transition probability function and an observation prob-
ability function, i.e.,

PSn+1|Sn
, and (3.1a)

PYn|Sn
. (3.1b)

In Chapter 2 we described algorithms for fitting and using the probability dis-
tributions specified in Eqn. (3.1) if both the set of possible states S and the set
of possible observations Y have an unstructured finite number of discrete values.
However, in many applications the measurements, and perhaps the states also,
are thought of as being drawn from continuous vector spaces.

Since most experimental observations are measured and recorded digitally,
one could argue that discrete approximations are adequate and attempt to use
the algorithms of Chapter 2 anyway. That approach is disastrous because it
precludes exploiting either the metric or topological properties of the space of
measurements. Consider the histogram of the first 600 samples of Tang’s laser
data in Fig. 3.1. Neither 5 nor 93 occurs, but it seems more plausible that 93
will occur in the remainder of the samples because there are 14 occurrences
between 90 and 96 and none between 2 and 8. To make more effective use of
measured data, one usually approximates the probabilities by functions with a
small number of free parameters. For many such families of parametric models
one can use the algorithms of Chapter 2 with minor modifications1. For a
practitioner, the challenge is to find or develop both a parametric family that
closely matches the measured system and algorithms for fitting and using the
models.

In this chapter we will describe some model families with Gaussian obser-
vations. We will use the failure of the maximum likelihood approach with such

1At the 1988 ICASSP meeting, Poritz[17] reviewed several HMM variants.

47
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Figure 3.1: Histogram of Tang’s laser measurements. Even though neither y = 5
nor y = 93 occurs in y[0 : 600], it is more plausible that y = 93 would occur in
future measurements because of what happens in the neighborhood. Discarding
the numerical significance of the bin labels would preclude such an observation.
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models to motivate and develop regularization. Also, we will touch on the rela-
tionships between HMM model families and other kinds of models.

3.1 Gaussian Observations

3.1.1 Independent Scalar Observations

A simple model for continuously distributed measurements is an HMM with an
independent scalar Gaussian observation model associated with each state. In
many cases it is adequate, but risky (See Fig. 3.3), to simply use the algorithms
of Chapter 2 with minor modifications for Gaussian observations. Such algo-
rithms performed satisfactorily for the exercises depicted in Fig. 3.2 in which we
estimated an approximate state sequence and model parameters from a sequence
of observations.

The code that generated the data for Fig. 3.2 implemented algorithms from
Chapter 2 with the following modifications:

PY [t]|S[t] (y | s) The Viterbi algorithm, the forward algorithm, and the back-
ward algorithm all use the observation probability conditioned on the
state. In each case one simply uses the value of the probability density
conditioned on the state

PY [t]|S[t] (y | s) =
1√

2πσ2
s

e
− (y−µs)2

2σ2
s .
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σ2 = 0.88

Figure 3.2: An HMM with scalar Gaussian observations. A state diagram ap-
pears in (a). The half-life of the first state is about ten and the half life of
the second state is about five, i.e., 0.9310 ≈ 0.875 ≈ 0.5. A simulated state se-
quence and observation sequence appear in (b) and (c) respectively. Using the
model parameters from (a) and the observation sequence from (c), the Viterbi
algorithm estimates the state sequence that appears in (d) which is satisfyingly
similar to the state sequence in (b). Finally, starting from the initial model
depicted in (e) and using the observation sequence depicted in (c), 50 iterations
of the Baum-Welch algorithm produces the model depicted in (f) which is sat-
isfyingly similar to (a).



i
i

“main” — 2025/2/21 — 13:28 — page 51 — #61 i
i

i
i

i
i

3.1. GAUSSIAN OBSERVATIONS 51

Reestimation Reviewing the derivations in Section 2.3.2, we find that the
first two formulas in Table 2.1 (those for the initial state probability,
PS[0]|θ[n+1] (i | θ[n + 1]), and the state transition probability, PS[1]|S[0],θ[n+1] (s̃ | s))
still work with the new observation model. To derive reestimation formu-
las for the Gaussian observation model parameters, note that Eqn. (2.35)
becomes

Lobservation(y, s) ≡ logPY [0]|S[0],θ′ (y | s, θ′) (3.2)

= −1

2
log(2π)− log(σs)−

(y − µs)
2

2σ2
s

, (3.3)

and starting from Eqn. (2.46) calculate

Qobservation(θ′, θ) =
∑

q[0:T ]∈ST

Pθ (q[0 : T ] | y[0 : T ])

T−1∑
t=0

Lobservation(y[t], q[t])

(3.4)

=
∑
s∈S

T−1∑
t=0

Lobservation(y[t], s)
∑

q[0:T ]:q[t]=s

Pθ (q[0 : T ] | y[0 : T ])

(3.5)

= −
∑
s∈S

T−1∑
t=0

w(t, s)

(
1

2
log(2π) + log(σs) +

(y[t]− µs)
2

2σ2
s

)
.

(3.6)

Since the formulas

µs =

T−1∑
t=0

w(t, s)y[t] (3.7)

σ2
s =

T−1∑
t=0

w(t, s) (y[t]− µs)
2

(3.8)

maximize Qobservation(θ′, θ), we use them in place of the discrete observa-
tion reestimation formula of Chapter 2 (Table 2.1 and Eqn. (2.49)).

3.1.2 Singularities of the likelihood function and regular-
ization

Running 2 iterations of the Baum-Welch algorithm on the observation sequence
in Fig. 3.2 (c) starting with the model in Fig. 3.3 (a) produces the model in
Fig. 3.3 (b) in which the variance of the observations produced by the second
state looks suspiciously small. In fact with additional iterations of the Baum-
Welch algorithm that variance continues to shrink, and the code soon stops
with a floating point exception. The algorithm is pursuing a singularity in the



i
i

“main” — 2025/2/21 — 13:28 — page 52 — #62 i
i

i
i

i
i

52 CHAPTER 3. VARIANTS AND GENERALIZATIONS

likelihood function in which the second state fits observation y[52] exactly and
the first state fits all of the other observations. If µ2 = y[52] the likelihood
PY [t]|S[t] (y[52] | 2) increases without limit as σ2

2 → 0, i.e.,

lim
σ2
2→0

PY [t]|S[t] (y[52] | 2) =∞.

(a)

0.50

0.50 0.50

0.50

µ = −2
σ2 = 2

µ = 2
σ2 = 2

(b)

0.99

1.00 9.0e− 18

8.8e− 03

µ = −0.76
σ2 = 1.33

µ = 2.90
σ2 = 1.2e− 04

Figure 3.3: An illustration of trouble with maximum likelihood. Here we have
used the same implementation of the Baum-Welch algorithm that we used to
produce Fig. 3.2(f), but rather than starting with the model in Fig. 3.2 (c),
we started the algorithm with the initial model depicted in (a) above. After
2 iterations of the algorithm we get the suspicious model depicted in (b) above.

Such singularities of likelihood are common among parametric probability
density functions. A particularly simple example is the Gaussian mixture model

f(y) = λ
1√

2πσ2
1

e
− (y−µ1)2

2σ2
1 + (1− λ)

1√
2πσ2

2

e
− (y−µ2)2

2σ2
2 , (3.9)

which has the five parameters µ1, σ1, µ2, σ2, and λ. Assuming that the data
are i. i. d., one might attempt a maximum likelihood fit to the observations in
Fig. 3.2 (e) with the likelihood function

g(µ1, σ1, µ2, σ2, λ) =

T−1∏
t=0

f(y[t]). (3.10)

While it is possible to find a useful local maximum of g near

µ1 = −1, σ1 = 1, µ2 = 1, σ2 = 1, λ =
2

3
,

the likelihood is higher near the singularities of g specified by the equations

µs = y[t]

σs = 0,

for each pair (s, t) ∈ {1, 2} × {1, 2, . . . , T}.
If, as is the case here, we want to exclude parameter vectors for which

the likelihood function is larger than its value at the solution we prefer, then
likelihood doesn’t really express our goal. Regularization refers to a variation
on maximum likelihood that more accurately reflects what we want. In the
next subsection, we explain how to use Bayesian priors to regularize maximum
a posteriori parameter estimates.
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3.1.3 The EM algorithm for maximum a posteriori esti-
mation

Bayesian estimation starts by characterizing the acceptability of models PY|θ
in terms of a prior probability distribution Pθ. Initial observations ye, called
evidence or training data, modify the prior through Bayes rule to yield the a
posteriori distribution

P (θ | ye) =
P (ye, θ)

P (ye)
=

P (ye | θ)P (θ)∫
P (ye | θ)P (θ) dθ

, (3.11)

and the probability of future observations yf is

P (yf | ye) =

∫
P (yf | θ)P (θ | ye) dθ. (3.12)

The parameter vector that maximizes the a posteriori probability,

θMAP ≡ argmax
θ

P (θ | ye) (3.13a)

= argmax
θ

P (θ,ye), (3.13b)

is called the MAP estimate. Using θMAP one may approximate2 Eqn. (3.12)
with P (yf | θMAP).

A slight variation of the algebra in Section 2.5 produces an EM algorithm
for MAP estimation. Dropping the subscript on ye if we replace the auxiliary
function of Eqn. (2.11), i.e.,

QMLE(θ′, θ) ≡ EP (S|y,θ) (logP (S,y | θ′)) ,

with

QMAP(θ′, θ) ≡ EP (S|y,θ) (logP (S,y, θ′)) (3.14a)

= QMLE(θ′, θ) + EP (S|y,θ) (logP (θ′)) (3.14b)

= QMLE(θ′, θ) + logP (θ′), (3.14c)

then the derivation of

QMAP(θ′, θ) > QMAP(θ, θ)⇒ P (y, θ′) > P (y, θ),

is completely parallel to the argument on page 42 that concludes QMLE(θ′, θ) >
QMLE(θ, θ). If in addition the components of P (θ) are independent, i.e.,

P (θ) = P (θinitial) · P (θtransition) · P (θobservation),

2Although it is every bit as reasonable to use the mean to characterize the a posteriori
distribution as it is to use the maximum, we prefer the maximum because changing from
MLE to MAP requires only minor modifications to the Baum-Welch algorithm. A strictly
Bayesian approach would retain the entire a posteriori distribution in parameter space rather
than characterizing the distribution by a single point estimate.
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then like the decomposition of QMLE in Eqn. (2.29) we find

QMAP(θ′, θ) = QMAP, initial(θ
′, θ)+QMAP, transition(θ′, θ)+QMAP, observation(θ′, θ),

with

QMAP, initial = QMLE, initial + logP (θinitial) (3.15a)

QMAP, transition = QMLE, transition + logP (θtransition) (3.15b)

QMAP, observation = QMLE, observation + logP (θobservation). (3.15c)

With a suitable prior, the simple form of Eqn. (3.15) makes it easy to convert a
program that implements the Baum-Welch algorithm for maximum likelihood
estimation into a program that implements maximum a posteriori estimation.

3.1.4 Vector Autoregressive Observations

Overview of the model

Rather than choosing a prior and developing algorithms for the independent
scalar observations of Section 3.1.1 we will work on more general models with
vector autoregressive Gaussian observations associated with each hidden state.
If at time t such a system is in state s, then the mean of the conditional distri-
bution for y[t] is a linear function of the d previous observations y[t−d : t] added
to a fixed offset3. Specifically, the conditional distributions for observations are
n dimensional vector Gaussians as follows:

Covariance The covariance is a state dependent positive definite n×n matrix
Σs.

Mean Given that the system is in state s, the parameters {cs,i,τ,j , ȳs,i} and the
d previous observations determine the mean of the observation distribution
through a linear function, with components

µi (s, y[t− d : t]) = ȳs,i +

d∑
τ=1

n∑
j=1

cs,i,τ,jyj [t− τ ]. (3.16)

We implement this as a linear function of a context vector x consisting of
d previous observations and a constant one, i.e.,

x[t] ≡
(−−−−→
y[t− 1],

−−−−→
y[t− 2], . . .

−−−−→
y[t− d], 1

)
≡ (y1[t− 1], y2[t− 1], . . . , yn[t− 1], y1[t− 2], . . . , yn[t− d], 1) .

3The function g in y = g(x) = mx is linear because: g(cx) = c(gx) and g(x + z) =
g(x) + g(z). On the other hand in the equation for a line, y = f(x) = mx+ b, f is an affine
function, in other words a linear function plus a constant offset. Subsequently we will not
make the distinction and refer to functions like f as linear.
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Using notation in which the ith component of the observation τ time steps
before time t is yi[t− τ ], the kth component of the context at time t is

xk[t] =

{
yi[t− τ ] 1 ≤ τ ≤ d

1 τ = d + 1, i = 1,
, (3.17)

where k = n · (τ − 1) + i, and

µs (s, y[t− d : t]) = Asx[t] (3.18)

where As is an n× (nd + 1) matrix consisting of {cs,i,τ,j} and {ȳs,i}.

Using this notation the model assumptions are (compare to Eqns. (1.19) and
(1.20) which describe the assumptions for HMMs with discrete observations.)
that the states follow a Markov process and that the conditional distribution of
an observation given the state s is Gaussian with mean Asx[t] and covariance
Σs, i.e.,

P (s[t] | s[−∞ : t], y[−∞ : t]) = P (s[t] | s[t− 1]) (3.19)

P (y[t] | s[−∞ : t + 1], y[−∞ : t]) =
1√

(2π)n
∣∣Σs(t)

∣∣ exp

(
−1

2
z⊤s(t)(t)Σ

−1
s(t)zs(t)(t)

)
(3.20)

where

zs(t) ≡ y(t)−Asx(t).

The model accounts for relationships between an observation and its prede-
cessors two ways, first the observation at time y[t] is related to the d previous
observations through the matrix As, and it is also related to all previous obser-
vations through the state s.

Reestimation

A derivation like the one leading to (3.6) yields

Qobservation(θ′, θ) =
1

2

∑
s∈S

T−1∑
t=0

w(t, s)
[
log
(∣∣Σ−1

s

∣∣)− n log(2π)− z⊤s (t)Σ−1
s zs(t)

]
.

(3.21)
Hence each term in the sum over s can be optimized separately. One can write
code that maximizes

∑T−1
t=0 w(t, s)

[
log
∣∣Σ−1

s

∣∣− z⊤s (t)Σ−1
s zs(t)

]
using operations

on vectors and matrices as follows:

1. Create a weighted context matrix Xs with columns x[t]
√
w(t, s), where

w(t, s) = PS[t]|y[0:T ] (s | y[0 : T ]) and Eqn. (3.17) defines x[t].

2. Create a weighted observation matrix Ys with columns y[t]
√
w(t, s).
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3. Solve
As = argmin

M
|Ys −MXs|2 (3.22)

(We use singular value decomposition methods here because they are sta-
ble and make diagnosing problems easy.)

4. Calculate a matrix of residuals

Zs = Ys −AsXs

5. Calculate a new covariance matrix4

Σs =

∑T−1
t=0 w(t, s)zs(t)z

⊤
s (t)∑T−1

t=0 w(t, s)
(3.23)

Regularization

As Eqn. (3.15) indicates, we can influence the a posteriori distributions of the
initial states, the transitions, and the observations by our selection of the re-
spective priors, P (θinitial), P (θtransition), and P (θobservation). Since singularities
in the likelihood are associated with singular covariance matrices Σs, the prior
for the covariance matrices is most urgent.

Following [30, 38] we use inverse-Wishart   distributions as priors for the
inverse covariance matrices. See pages 150-155 of Schafer [13] for a description
of these distributions. The inverse-Wishart prior has the following probability
density for an n× n inverse covariance matrix

PIW(Σ−1) ≡ C
∣∣Σ−1

∣∣m+n+1
2 e−

1
2 tr(ΛΣ−1),

where C is a normalization constant, m is called the degrees of freedom, and Λ
is called the scale. The mean and the maximum of the inverse-Wishart are

EΣ−1 =
1

m− n− 1
Λ−1, and

argmaxPIW

(
Σ−1

)
=

1

m + n + 1
Λ−1

respectively.

4One may derive this formula by differentiating the right-hand side of Eqn. 3.21 with
respect to the elements of Σ−1

s and setting the result equal to zero. The key is the observation
that for a positive definite matrix M ,

∂ log |M |
∂mi,j

=
[
M−1

]
i,j

,

i.e., the derivative of the log of the determinant with respect to the i, jth element of M is the
i, jth element of M−1.

Since the value of As that minimizes
∑T−1

t=0 w(t, s)− z⊤s (t)Σ−1
s zs(t) is independent of Σ−1

s ,
it is correct to do step 3 before step 5.
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Assuming neutral priors for the coefficient matrices As and the form

Λ = βI,

we find
P (θy) ∝

∏
s

∣∣Σ−1
s

∣∣α2 e−
1
2 tr(βΣ

−1
s ),

(where α = n + m + 1) and Eqn. 3.15c becomes

Qobservation = C +
∑
s

(
α

2
log
∣∣Σ−1

s

∣∣− 1

2
tr(βΣ−1

s )

)

+
1

2

∑
s

T−1∑
t=0

w(t, s)
[
log
∣∣Σ−1

s

∣∣− z⊤s (t)Σ−1
s zs(t)

]
,

where zs(t) ≡ y(t)− Asx(t) and w(t, s) is the probability of being in state s at
time t given the data y[0 : T ]. Reestimation of the regularized model is the same
as reestimation for the unregularized model except that Eqn. 3.23 is replaced
with

Σs =
βI +

∑T−1
t=0 w(t, s)zs(t)z

⊤
s (t)

α +
∑T−1

t=0 w(t, s)
. (3.24)

Thus in the absence of new information, a covariance matrix is given the default
value βI

α , and α is the weight of that default.

3.2 Related Models

Results from applying our code for HMMs with the vector autoregressive obser-
vations described in Section 3.1.4 to a time series of 3-d vectors from the Lorenz
system appear in Figure 3.4. Aside from the different observation models, we
used the same procedure and much of the same code to make Figure 3.4 and
Figure 1.10 on page 16. Here the model for each state uses a single previous ob-
served vector to forecast the next observation. Optimization should find regions
over which dynamics are approximately linear and assign those regions to single
states. We have no intuitive explanation for the many stripe like regions in the
center of the figure. The model class used to make the figure does not exploit
all of the available features of the Lorenz data. In particular it does not use
the Lorenz equations. Modeling techniques exist that can exploit knowledge of
nonlinear generating equations, e.g. extended Kalman filters and particle filters
that we mention below.

Here we list a few of the many techniques that are related to the basic ideas
we’ve described:

Nonstationary HMMs The definition of a stationary model is that all prob-
abilities are independent of shifts in time, i.e., PY [0:t] = PY [0+τ :t+τ ]∀(t, τ).
Many processes, for example weather, are not even approximately station-
ary. By making HMMs with state transition probabilities that depend on
time, many have created nonstationary HMMs for such applications.
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Figure 3.4: Plots of decoded states using an HMM with vector autoregressive
observations. Here the observations are a trajectory of three dimensional state
vectors from the Lorenz system. In each state the observation y[t] is modeled
as a Gaussian with a mean that is a linear function of one previous observation
y[t− 1].
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Gaussian mixtures In a Gaussian mixture, the probability density is weighted
average of Gaussian densities. We described a simple one dimensional two
component example in Eqn. (3.9). Although a simple Gaussian mixture
model does not use the notion of state, they are frequently used as observa-
tion models in HMMs. Note that a Gaussian mixture model is equivalent
to the degenerate case of an HMM with Gaussian observations in which
all state transition probabilities are identical.

Cluster weighted modeling For an HMM, the state transition probabilities
depend only on the state. Looking at Fig. 3.4, it seems that letting the
current observation y[t] influence the transition probabilities could be an
improvement, i.e., the probability of the next state would depend on both
the current state and the current observation. By ignoring the current
state entirely, one obtains a cluster weighted model [31]; the observation
at time t+1 is a mixture whose component weights are determined by the
observation at time t.

Kalman filter The Kalman filter is a version of the forward algorithm one
obtains for a model with continuous states x[t] and observations y[t] with
the form

x[t + 1] = F (x[t], t) + η[t]

y[t] = G(x[t]) + ϵ[t]

where the functions F and G are linear in x and the noise terms η[t] and
ϵ[t] are Gaussian. We will describe algorithms that operate with such
models in the next chapter.

Extended Kalman filter Using linear approximations to nonlinear functions
F and G in a Kalman filter is called an extended Kalman filter. Linear
approximations work well as long as the spreads of the state distributions
are small compared to the second derivatives of F and G.

Unscented Kalman filter Rather than use linear approximations to F and
G, an unscented Kalman filter[34] uses exact functions and a collection of
samples to estimate means and variances.

Particle filter The idea of using the empirical distribution of many simu-
lated trajectories (particles) to approximate the conditional distribution
PX[t]|Y [0:t+1] is called particle filtering[32, 35]. In the procedure, parti-
cles that seem inconsistent with measurements are eliminated and new
particles are created.
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Chapter 4

Continuous States and
Observations and Kalman
Filtering

We think of state space systems with continuously distributed states and obser-
vations in terms of equations like

x[t] = F (x[t− 1], t) + η[t] (4.1a)

y[t] = G(x[t], t) + ϵ[t], (4.1b)

where X ∈ Rn is the state variable, Y ∈ Rm is the observation, and η[t] and ϵ[t]
are noise terms. Equations (4.1) define the conditional probability densities

PX[t+1]|X[t] (4.2)

and
PY [t]|X[t]. (4.3)

Having each of the noise terms η[t] and ϵ[t] in Eqns. 4.1 be independent of all
other noise terms is sufficient to ensure that the following assumptions hold:

1. The dynamics of the state variable X are Markov.

2. Given the state at time t, the observation Y [t] is independent of everything
else.

These are the same as the assumptions of Eqns. (1.19) and (1.20) which charac-
terize HMMs with discrete observations. In this chapter, we write forward and
backward algorithms by replacing sums of finite probabilities with integrals over
probability densities. If the functions F and G are linear in X and the noise
terms η[t] and ϵ[t] are independent and Gaussian, then the forward algorithm is
called Kalman Filtering.

61
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In this chapter we go over the forward and backward algorithms for con-
tinuous states and observations three times. First in Section 4.1 we emphasize
the parallel to Chapter 2 by simply replacing sums in the development of that
chapter with integrals. By themselves, the results are not immediately useful
because one must specify parametric forms for the probability densities and do
the integrals to implement the algorithms. Next, in Section 4.2, we concisely
present the algorithms one obtains when the functions F and G in Eqns. (4.1)
are linear and the noise terms η[t] and ϵ[t] are Gaussian. We hope this concise
presentation will be useful for readers who want to implement the algorithms.
Finally, for completeness, in Section 4.3 we demonstrate that in fact the integrals
of Section 4.1 do yield the formulas of Section 4.2.

4.1 Algorithms with Integrals

Here we write out the forward and backward algorithms for models with continu-
ously distributed states and observations by simply replacing sums in Chapter 2
with integrals.

4.1.1 Forward Algorithm

Like the forward algorithm for a simple HMM (see Equations (2.2) on page 22)
the forward algorithm for continuous variables uses each successive observation
and calculates the incremental likelihood

γ[t] ≡ P (y[t] | y[0 : t])

and the three distributions

α(t, x) ≡ PX[t]|Y [0:t+1] (x | y[0 : t + 1]) Updated state distribution

a(t, x) ≡ PX[t]|Y [0:t] (x | y[0 : t]) Forecast state distribution

ã(t, x) ≡ PX[t],Y [t]|Y [0:t] (x, y[t] | y[0 : t]) Joint forecast distribution.

Using the distributions PX[0] and PY [0]|X[0] which are parts of the model, we
start by initializing in step 1 and then we loop over the remaining steps for the
subsequent observations:

1. Initialize The calculations

PX[0],Y [0] (x, y[0]) = PY [0]|X[0] (y[0] | x)PX[0] (x) (4.4)

γ[0] = P (y[0]) =

∫
PX[0],Y [0] (x, y[0]) dx (4.5)

α(0, x) ≡ PX[0]|Y [0:1] (x | y[0 : 1]) =
PX[0],Y [0] (x, y[0])

P (y[0])
(4.6)

specify γ[0], the likelihood for the first observation and α(0, x), the condi-
tional distribution of the first state given the first observation.
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2. Forecast the state distribution Find the conditional distribution of
the state at the present time given the past observations.

P (x[t], x[t− 1] | y[0 : t]) = P (x[t] | x[t− 1], y[0 : t]) (4.7)

× P (x[t− 1] | y[0 : t])

= P (x[t] | x[t− 1])P (x[t− 1] | y[0 : t]) (4.8)

= P (x[t] | x[t− 1])α(t− 1, x[t− 1])

a(t, x) ≡ PX[t]|Y [0:t] (x | y[0 : t])

=

∫
P (x[t], x[t− 1] | y[0 : t]) dx[t− 1] (4.9)

=

∫
PX[1]|X[0] (x|x′)α(t− 1, x′)dx′. (4.10)

Here we justify (4.7) by Bayes rule, (4.8) by the model assumptions, and
(4.9) by the definition of a marginal distribution.

3. Calculate the joint forecast Leaving the state at the present time as
a free parameter, calculate the joint conditional distribution of the state
and the observation y[t] given past observations.

ã(t, x) ≡ PX[t],Y [t]|Y [0:t] (x, y[t] | y[0 : t])

= P (y[t] | x[t], y[0 : t]) PX[t]|Y [0:t] (x | y[0 : t]) (4.11)

= P (y[t] | x[t]) a(t, x) (4.12)

Here we justify (4.11) by Bayes rule and (4.12) by the model assumptions.

4. Calculate the incremental likelihood Integrate out x[t] to get the
conditional probability of this observation given previous observations

γ[t] ≡ P (y[t] | y[0 : t]) =

∫
PX[t],Y [t]|Y [0:t] (x, y[t] | y[0 : t]) dx[t]

=

∫
ã(t, x)dx (4.13)

5. Update the conditional state distribution Use Bayes rule to combine
(4.12) and (4.13) to get α(t, x), the conditional distribution of the present
state given all past observations and the present observation.

α(t, x) ≡ PX[t]|Y [0:t+1] (x | y[0 : t + 1]) (4.14)

=
PX[t],Y [t]|Y [0:t] (x, y[t] | y[0 : t])

P (y[t] | y[0 : t])
(4.15)

=
ã(t, x)

γ[t]
. (4.16)
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Note that aside from normalization, the forward algorithm alternates between
multiplying by the observation likelihood in (4.12) and integrating with the state
transition probability in (4.10).

4.1.2 Backward Algorithm

Similarly, the backward algorithm finds a function called the backwards forecast,

β(t, x) ≡ PY [t+1:T ]|X[t] (y[t + 1 : T ] | x)

P (y[t + 1 : T ] | y[0 : t + 1])
, (4.17)

for each time t by starting with β(T −1, x) = 1 and following with the recursion

β(t− 1, x) =

∫
β(t, x′)PY [t]|X[t] (y[t] | x′)PX[t]|X[t−1] (x′ | x)

P (y[t] | y[0 : t])
dx′. (4.18)

Note that by replacing the sum over discrete states s in (2.20) on page 31 with
an integral over continuous states x′ one obtains (4.18), and that as with the
discrete case we have chosen to define β(t, x) so that the conditional distribution
of the state at time t given all of the observations is

α(t, x)β(t, x) = PX[t]|Y [0:T ] (x | y[0 : T ]) . (4.19)

Defining and evaluating a backwards update function

b(t, x) ≡ β(t, x)PY [t]|X[t] (y[t] | x)

P (y[t] | y[0 : t])
(4.20)

lets one write Eqn. (4.18) as the backwards forecast

β(t− 1, x) =

∫
b(t, x′)PX[t]|X[t−1] (x′ | x) dx′ (4.21)

which may make evaluating the integral easier and emphasizes the alternation
between multiplying by the observation likelihood in (4.20) and integrating with
the transition probability (4.21).

4.2 Linear Gaussian Systems

If the functions F and G in Eqn. (4.1) are linear in x, the noise terms η[t] and
ϵ[t] are i. i. d. and Gaussian1 with η[t] ∼ N (0,Ση) and ϵ[t] ∼ N (0,Σϵ), and the

1We assume identical distributions only to simplify the notation. It lets us write η and
ϵ instead of η[t] and ϵ[t]. The procedures generalize easily to time dependent noise terms.
The notation X ∼ N (µ,Σ) means, “The random variable X has a Gaussian distribution with
mean µ and covariance Σ.
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distribution of the initial state X[0] is also Gaussian, then we can write

X[0] ∼ N
(
µX[0],ΣX[0]

)
(4.22a)

x[t] = F [t] · x[t− 1] + η η ∼ N (0,Ση) (4.22b)

P (x[t] | x[t− 1]) = N (Fx[t− 1],Ση)|x[t] (4.22c)

y[t] = G[t] · x[t] + ϵ ϵ ∼ N (0,Σϵ) (4.22d)

P (y[t] | x[t]) = N (Gx[t],Σϵ)|y[t] , (4.22e)

where F [t] and G[t] are matrices. We use the notation N (µ,Σ) for a Gaussian
distribution with mean µ and covariance Σ, and we denote the value of a Gaus-
sian probability density at v by N (µ,Σ)|v i.e. if V is an n-dimensional random

variable V ∼ N (µ,Σ) then P (v) = N (µ,Σ)|v ≡ 1√
(2π)n|Σ|

e−
1
2 (v−µ)⊤Σ−1(v−µ).

We describe the forward and backward algorithms for linear Gaussian sys-
tems in terms of the quantities listed below. Our notation for these quantities
emphasizes the similarity to the calculations for discrete processes in Chapter 2.
In particular the Greek subscripts α and β denote the forward updated distri-
bution and the backwards forecast distribution respectively while the Roman
subscripts a and b denote the forward forecast distribution and the backwards
updated distributions respectively. The assumptions of Eqns. (4.22) imply that
the distributions described by these parameters are also Gaussian.

µα[t] and Σα[t] (Note Greek subscript.) are the parameters of the updated
state distribution2, i.e.,

P (x[t] | y[0 : t + 1]) ≡ N (µα[t],Σα[t])|x[t] .

µa[t] and Σa[t] (Note Roman subscript.) are the parameters of the one step
forecast of the state distribution3, i.e.,

P (x[t] | y[0 : t]) ≡ N (µa[t],Σa[t])|x[t] .

µγ [t] and Σγ [t] are the parameters of the conditional probability of the ob-
servation at time t given all previous observations, i.e.

P (y[t] | y[0 : t]) ≡ N (µγ [t],Σγ [t])|y[t] ≡ γ[t].

Neither the forward nor the backwards Kalman filter uses the γ terms,
but they are useful for calculating the likelihood for model parameters.

Nβ[t], µβ[t] and Σβ[t] are the parameters4 of the backwards forecast function
β(t, x), which as a ratio of Gaussian functions is itself an unnormalized

2For the quantities that we call µα[t] and Σα[t], Maybeck[9] uses the notation x̂(t+i ) and

P (t+i ) and Kailath et al.[5] use x̂i|i and Pi|i respectively.
3For the quantities that we call µa[t] and Σa[t], Maybeck[9] uses the notation x̂(t−i ) and

P (t−i ) and Kailath et al.[5] use x̂i+1 and Pi+1 respectively.
4On page 342, Kailath et al.[5] use x̂b

i to denote the quantity that we call µβ [t].



i
i

“main” — 2025/2/21 — 13:28 — page 66 — #76 i
i

i
i

i
i

66CHAPTER 4. CONTINUOUS STATES ANDOBSERVATIONS ANDKALMAN FILTERING

Gaussian. We define Nβ [t] by

β(t, x)

Nβ [t]
≡ N (µβ [t],Σβ [t])|x .

µb[t] and Σb[t] are the mean5 and covariance of the backwards update func-
tion b(t, x) (see Eqn. (4.26)) which is an intermediate term in the backward
algorithm. Notice that the parameters of the forward forecast have Ro-
man subscripts while the parameters of the backward forecast have Greek
subscripts.

µαβ[t] and Σαβ[t] are the mean and covariance of the best estimate of the
state at time t given all of the observations, i.e.

P (x[t] | y[0 : T ]) ≡ N (µαβ [t],Σαβ [t])|x .

4.2.1 Kalman Filter: The Forward Algorithm

The following two step recursion is called Kalman filtering6 and it implements
the forward algorithm:

Calculate the forecast of the distribution of the state

µa[t] = F [t] · µα[t− 1] (4.23a)

Σa[t] = F [t] · Σα[t− 1] · (F [t])
⊤

+ Ση (4.23b)

Update the distribution of the current state using y[t]

(Σα[t])
−1

= (Σa[t])
−1

+ (G[t])
⊤

Σ−1
ϵ G[t] (4.24a)

µα[t] = µa[t] + Σα[t] (G[t])
⊤

Σ−1
ϵ

[
y[t]−G[t]µa[t]

]
(4.24b)

Note:

• Equations (4.24) are usually presented in the equivalent but computation-
ally more efficient form

µα[t] = µa[t] + K[t] (y[t]−G[t]µa[t]) (4.25a)

Σα[t] = (I−K[t]G[t]) Σa[t] (4.25b)

where

K[t] ≡ Σa[t] (G[t])
⊤
(
G[t]Σa[t] (G[t])

⊤
+ Σϵ

)−1

(4.25c)

is called the Kalman gain matrix 7 (See Eqn. (4.25).).

5Kailath et al.[5] use x̂b
i|i to denote the quantity that we call µb[t].

6There are many more detailed presentations of Kalman filters, e.g., Maybeck[9], Kailath
et al.[5], Jacobs[53], and Brown and Hwang[50].

7This computationally more efficient form was Kalman’s principle contribution.
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• One can calculate the log likelihood of a model by summing the increments

log (P (y[0 : T ])) =

T−1∑
t=0

log (P (y[t] | y[0 : t]))

and calculating each increment as

P (y[t] | y[0 : t]) = N (µγ [t],Σγ [t])|y[t]
where

µγ [t] = G[t]µa[t]

Σγ [t] = G[t]Σa[t] (G[t])
⊤

+ Σϵ and

log (P (y[t] | y[0 : t])) = −1

2

(
n log(2π) + log (|Σγ [t]|)

+
(
y[t]− µγ [t]

)⊤
(Σγ [t])

−1 (
y[t]− µγ [t]

))
.

4.2.2 The Backward Algorithm

We calculate µβ [t] and Σβ [t] as defined in Eqn. (4.17) with the following recur-
sion that goes through the observations in reverse order.

Update the distribution of the current state using y[t]

(Σb[t])
−1

= (Σβ [t])
−1

+ (G[t])
⊤

(Σϵ)
−1

G[t] (4.26a)

µb[t] = µβ [t] + Σb[t] (G[t])
⊤

Σ−1
ϵ

[
y[t]−G[t]µβ [t]

]
, (4.26b)

Forecast of the distribution of the state backward in time

µβ [t− 1] = (F [t])
−1

µb[t] (4.27a)

Σβ [t− 1] = (F [t])
−1

(Ση + Σb[t])
(

(F [t])
−1
)⊤

(4.27b)

Note:

• The the backward update formulas, (4.26) are exactly the same as the
forward update formulas, (4.24), and the forecast formulas, (4.27) and
(4.23), principally differ in that the backward formula uses F−1 where the
forward formula uses F .

• As for the forward recursion, the update formulas are usually presented
in the computationally more efficient form

Σb[t] = (I−Kb[t]G[t]) Σβ [t] (4.28a)

µb[t] = µβ [t] + Kb[t](y[t]−G[t]µβ [t]) (4.28b)

where

Kb[t] ≡ Σβ [t]G[t]
⊤
(
G[t]Σβ [t]G[t]

⊤
+ Σϵ[t]

)−1

(4.28c)

is called the backwards Kalman gain matrix.
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• Ideally one would initialize the backward algorithm with

(Σβ [T − 1])
−1

= 0

µβ [T − 1] = 0

but that would make (Σb[T − 1])
−1

uninvertible and preclude using Eqn. (4.27b)
to evaluate Σβ [T − 1]. One can address the problem by initializing Σ−1

β [T − 1]
with small values, or by using the inverse covariance form of the algorithm
(see Section 4.3.4.).

4.2.3 Smoothing

The conditional distribution of the state at time t given all of the data is Gaus-
sian and therefore specified by its covariance and mean, i.e.,

P (x[t] | y[0 : T ]) = N (µαβ [t],Σαβ [t])|x[t] ,

where

(Σαβ [t])
−1

= (Σα[t])
−1

+ (Σβ [t])
−1

and (4.29a)

µαβ [t] = Σαβ [t]
(

(Σα[t])
−1

µα[t] + (Σβ [t])
−1

µβ [t]
)

(4.29b)

are combinations of the forward update parameters and the backward prediction
parameters. Such use of all of the observations to estimate the state sequence is
called smoothing. Combining forward update parameters and backward update
parameters, i.e., α and b, for smoothing is an error.

4.3 Algorithm Derivations and Details

Here we connect the integrals that describe the forward and backward algo-
rithms (Eqns. (4.4)-(4.26)) to the formulas (Eqns. (4.23)-(4.29)). In this con-
text each distribution is Gaussian. So we can characterize each distribution by
its mean and covariance and ignore normalization. Given two d-dimensional
Gaussian density functions

P1(x) ≡ 1√
(2π)d |Σ1|

exp

(
−1

2
(x− µ1)⊤Σ−1

1 (x− µ1)

)
≡ N (µ1,Σ1)|x and

P2(x) ≡ 1√
(2π)d |Σ2|

exp

(
−1

2
(x− µ2)⊤Σ−1

2 (x− µ2)

)
≡ N (µ2,Σ2)|x ,

we can characterize their product or ratio by respectively adding or subtracting
their exponents (see Equation (A.14) on page 130).
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4.3.1 Forward Kalman Filter

Recall that the forward algorithm for a simple HMM (see Eqn. (2.7) on page
25) alternates between multiplying a state distribution by a likelihood and mul-
tiplying the result by the state transition probability matrix. In the forward
Kalman filter the state transition matrix is a Gaussian and the sum is replaced
by an integral.

The basic loop consists of steps 2 through 5 below. For the first iteration,
we start with the model parameters that describe P (x[0]) and proceed directly
to step 3.

1. Initialize with µa[0] and Σa[0]. We initialize the recursion using the
model parameters µa[0] and Σa[0] of P (x[0]) and entering the loop at
step 3 to calculate µγ [0] and Σγ [0] by setting t = 0.

2. Calculate the state forecast, P (x[t] | y[0 : t]). From Eqn. (4.10) on
page 63

a(t, x) =

∫
N (Fx′,Ση)|x α((t− 1), x′)dx′ (4.30)

Rather than evaluating the integral to find the distribution, we can specify
it completely by calculating its first two moments. Since

x[t] = F [t]x[t− 1] + η.

the mean is

µa[t] = Ex[t−1],η|y[0:t] [F [t]X[t− 1] + η] (4.31a)

= Ex[t−1],η|y[0:t]F [t]X[t− 1] + Ex[t−1],η|y[0:t]η (4.31b)

= Ex[t−1]|y[0:t]F [t]X[t− 1] + Eηη (4.31c)

= F [t]µα[t− 1]. (4.31d)

The key step in the above sequence is Eqn. (4.31c) which we justify by
observing that the distribution of the noise η is independent of time and
independent of x[τ ], and y[τ ] for all earlier times τ . Similarly we calculate
the variance by

Σa[t] = Ex[t−1],η|y[0:t]
[

(F [t]X[t− 1] + η − µa[t− 1])

× (F [t]X[t− 1] + η − µa[t− 1])
⊤ ]

(4.31e)

= F [t]Σα[t− 1]F [t]
⊤

+ Ση. (4.31f)

Thus Eqn. (4.23) implements the integral of Eqn. (4.10).

3. Calculate P (y[t] | y[0 : t]). Using

y[t] = G[t]x[t] + ϵ
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we calculate the mean and covariance of the distribution of the forecast
observation as follows

µγ [t] = Ex[t],ϵ|y[0:t]G[t]X[t] + ϵ

= G[t]µa[t] (4.32)

Σγ [t] = Ex[t],ϵ|y[0:t] (G[t]X[t] + ϵ− µγ [t])

× (G[t]X[t] + ϵ− µγ [t])
⊤

= G[t]Σa[t]G[t]
⊤

+ Σϵ (4.33)

4. Calculate P (x[t], y[t] | y[0 : t]). The forecast distribution of the joint
variable

z[t] =

[
x[t]
y[t]

]
is characterized by

µz =

[
µa[t]
µγ [t]

]
and

Σz =

[
Σa[t] Σa[t](G[t])⊤

G[t]Σa[t] Σγ [t]

]
≡
[
A C
C⊤ B

]
. (4.34)

We derive the off diagonal terms of Σz in Eqn. (4.34) as follows

C = Ex[t],ϵ|y[0:t]
(
x[t]− µa[t]

)(
y[t]− µγ [t]

)⊤
= Ex[t]|y[0:t]

(
x[t]− µa[t]

)(
x[t]− µa[t]

)⊤
(G[t])

⊤

+ Ex[t],ϵ|y[0:t]
(
x[t]− µa[t]

)(
ϵ
)

= Σa[t]
(
G[t]

)⊤
. (4.35)

We use the terms A, B and C in the right block matrix of (4.34) to match
(A.5) on page 128 of the appendix where we derive expressions for D, E
and F in [

A C
C⊤ B

]−1

≡
[
D F
F⊤ E

]
.

we will use those expressions when we calculate the conditional distribu-
tion of x[t] given y[t] in step 5.

Note that the calculation in this step is equivalent to completing the square
in the sum of the exponents we would get by multiplying P (y[t] | x[t]) and
a(t, x) in (4.12), i.e.,

N (µã,Σã)|x,y[t] ≡ PX[t],Y [t]|Y [0:t] (x, y[t] | y[0 : t])

= N (µa,Σa)|xN (G[t]x,Σϵ)|y[t] (4.36)
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5. Calculate the state update, P (x[t] | y[0 : t+ 1]). With the actual
value of y[t] and the joint distribution of x[t] and y[t] given y[0 : t] from
step 4, we use Eqn. (A.7) from page 129 in the appendix to write the
parameters of the conditional P (x[t] | y[0 : t + 1]) as

Σα[t] = D−1 (4.37a)

µα[t] = µa[t] + CB−1 (y[t]− µγ [t]) . (4.37b)

Note the following equations and justifications:

E−1 = B − C⊤A−1C See (A.5b)

= Σγ [t]−G[t]Σa[t] (G[t])
⊤

See (4.34)

= Σϵ See (4.33)

CB−1 = D−1A−1CE See (A.5c)

= Σα[t] (G[t])
⊤
E See (4.35)

= Σα[t] (G[t])
⊤

(Σϵ)
−1

D = A−1 + A−1CEC⊤A−1 See (A.5a).

Thus

(Σα[t])
−1

= (Σa[t])
−1

+ (G[t])
⊤

Σ−1
ϵ G[t] (4.38a)

µα[t] = µa[t] + Σα[t] (G[t])
⊤

Σ−1
ϵ

[
y[t]−G[t]µa[t]

]
(4.38b)

which are the update equations in (4.24).

As presented in Eqns. (4.23) and (4.24), the forward algorithm requires

two matrix inversions per iteration. First one must invert (Σα[t− 1])
−1

for
Eqn. (4.23b), then one must invert Σa[t− 1] for Eqn. (4.24a). Each of these is
an n × n matrix where n is the dimension of the state x. One can avoid these
inversions either by keeping track of state space covariances or by keeping track
of inverse state space covariances. Either choice improves the numerical speed
and accuracy of the algorithm. Kalman’s form keeps track of state space covari-
ances and uses the Kalman gain matrix which in the notation of Eqn. (4.34) is
K = CB−1. To get Eqn. (4.37) into Kalman’s form, note that by Eqn. (A.5a)
on page 128, D−1 = A− CB−1C⊤, and thus

Σα[t] =
(
I−K[t]G[t]

)
Σa[t] (4.39a)

µα[t] = µa[t] + K[t] (y[t]− µγ [t]) . (4.39b)

Using Eqns. (4.33), (4.34) and (4.35), we find the Kalman gain matrix in terms
of known quantities to be

CB−1 ≡ K[t]

= Σa[t]
(
G[t]

)⊤(
Σγ [t]

)−1

= Σa[t]
(
G[t]

)⊤(
G[t]Σa[t]G[t]

⊤
+ Σϵ

)−1
. (4.40)
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The formula requires inversion of an m×m matrix where m, the dimension of
the observation y, is usually less than the dimension of the state x.

4.3.2 Backward Recursion

On page 64 we described the backwards recursion as alternating between mul-
tiplying a prior by a likelihood in (4.20) and integrating the product of a state
probability and a state transition probability in (4.21).

We should initialize the backward recursion with a uniform distribution
β(T − 1, x) = 1 which requires Σ−1

β(T−1) = 0. We will ignore that for now

and focus on the two alternating steps:

1. Backwards Update ignoring normalization, given the backwards fore-
cast β(t, x), the update formula is

b(t, x) = β(t, x)P (y[t] | x)

= N
(
µβ(t,x),Σβ(t,x)

)∣∣
x
N (G[t]x, ϵ)|y[t] . (4.41)

Notice that the form of (4.41) matches the form of (4.36) on page 70 in
the forward recursion. After taking the conditional given the actual value
of y[t] we copy the result from (4.38) and obtain

(Σb[t])
−1

= (Σβ [t])
−1

+ (G[t])
⊤

Σ−1
ϵ G[t] (4.42a)

µb[t] = µβ [t] + Σb[t] (G[t])
⊤

Σ−1
ϵ

[
y[t]−G[t]µβ [t]

]
(4.42b)

2. Backwards Forecast From Equation (4.21) on page 64 the integral for
the backward forecast is

β(t− 1, x) =

∫
N
(
µb[t],Σb[t]

)∣∣
x′ N (Fx,Ση)|x′ dx

′ (4.43)

and from Equation (4.10) on page 63 the corresponding integral for the
forward forecast is

a(t + 1, x) =

∫
N
(
µα[t],Σα[t]

)∣∣
x′ N (Fx′,Ση)|x dx′. (4.44)

On page 69 via Equations (4.31) we showed that the forward forecast is

µa[t] = F [t] · µα[t− 1]

Σa[t] = F [t] · Σα[t− 1] · (F [t])
⊤

+ Ση.

Manipulating the quadratic for in the exponent of N
(
µb[t],Σb[t]

)∣∣
x′ we
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find

Q ≡ (x′ − Fx)
⊤

Σ−1
η (x′ − Fx)

=
(
F−1x′ − x

)⊤
F⊤Σ−1

η F
(
F−1x′ − x

)
so

N (Fx,Ση)|x′ = N
(
F−1x′, F⊤ΣηF

)∣∣
x

using this in (4.44) yields

µβ [t− 1] = (F [t])
−1

µb[t]

Σβ [t− 1] = (F [t])
−1

(Ση + Σb[t])
(

(F [t])
−1
)⊤

,

which exactly matches (4.27) on page 67.

Since the form of the forward update formula, (4.38) on page 71, is the same
as the form of the backwards update formula, (4.42) on page 72, the formula
for the backwards gain, (4.28c) on page 67, matches the formula for the forward
gain, (4.40) on page 71.

4.3.3 Smoothing

We have defined α(t, x) and β(t, x) so that

PX[t]|Y [0:T ] (x | y[0 : T ]) = α(t, x)β(t, x).

(See Eqn. (4.19).) In fact PX[t]|Y [0:T ] is Gaussian, and we denote its parameters
µαβ [t] and Σαβ [t]. Examining the exponential terms in α(t, x)β(t, x) we find
(suppressing the time indices)

(x− µα)
⊤

Σ−1
α (x− µα) + (x− µβ)

⊤
Σ−1

β (x− µβ)

= x⊤
(

(Σα[t])
−1

+ (Σβ [t])
−1
)
x− 2x⊤

(
(Σα[t])

−1
µα[t] + (Σβ [t])

−1
µβ [t]

)
+ µ⊤

α (Σα[t])
−1

µα + µ⊤
β (Σβ [t])

−1
µβ ,

which implies

(Σαβ [t])
−1

= (Σα[t])
−1

+ (Σβ [t])
−1

and (4.45a)

µαβ [t] = Σαβ [t]
(

(Σα[t])
−1

µα[t] + (Σβ [t])
−1

µβ [t]
)
. (4.45b)

4.3.4 Inverse Covariance Form

If the inverse covariance of the state distribution is singular, one must propa-
gate inverse covariances rather than covariances (see page 239 of Maybeck[8]).
Kailath et al. call this The Information Form (see page 332 of [5]). The proce-
dure is useful when one makes the backwards pass through the data for smooth-
ing because the initial inverse covariance is zero.
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4.3.5 Extended Kalman Filter

Recall that Eqn. (4.1) on page 61 at the beginning of the chapter is

x[t + 1] = F (x[t], t) + η

y[t] = G(x[t], t) + ϵ,

and that if the functions F and G are linear and the noise terms η and ϵ
are independent and Gaussian that the Kalman filter implements the forward
algorithm. If on the other hand, the functions F and G are nonlinear but
the errors of first order approximations to them are small compared to the
size of the state covariance, then one can reasonably apply the same algorithm
to the approximations. The resulting procedure is called an extended Kalman
filter. While, as we noted in Section 3.2 there are more robust alternatives, the
simplicity of extended Kalman filters explains their frequent use. In Section 1.1
we applied an extended Kalman filter to laser measurements for the following
purposes:

• Estimate model parameters

• Estimate state space trajectory

• Forecast measurements

And in the next chapter we will compare the likelihood of a model implemented
as an extended Kalman filter to a performance bound obtained from Lyapunov
exponent estimates.
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Chapter 5

Toy Problems and
Performance Bounds

Having developed algorithms for fitting model parameters, one might reasonably
ask how well the models so produced perform. In this chapter we argue that
the exercise of fitting models to data from chaotic dynamical systems is inter-
esting because Lyapunov exponent calculations give a quantitative benchmark
against which to compare model performance. The idea is that the stretching
or local instability of dynamics, which Lyapunov exponents characterize, lim-
its the predictability of sequences of observations. We will start by examining
a toy example derived from the Lorenz system that informally introduces the
main ideas. From there we will review definitions of entropy and Lyapunov
exponents and results from information theory and ergodic theory that connect
the ideas. Finally we explain a simple calculation that can determine that a
proposed model is fundamentally suboptimal.

We suppose that a true stochastic process that assigns probabilities to se-
quences of observations exists. Many of the terms that we define are expected
values with respect to those probabilities, and we find that sample sequences
converge to those expected values. We use P∗|µ to denote these true probabili-
ties1, and we use them to define expected values without delving in to theoretical
questions about their existence.

1Following Kolmogorov, modern probability theory is cast a subfield of measure theory.
The measure theory literature uses the Greek letter µ for a function or measure that maps sets
to R+. In earlier chapters, we have used P∗|θ to denote parametric families of distributions.
We introduce the mongrel notation P∗|µ here to make our notation for comparisons between
a true distribution and a parametric model natural. The meaning of the Greek letter µ here
is not related to its use to denote the mean of a distribution.

75
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Lorenz Example

As an example, we have simulated a version of the Lorenz system (Eqn. (1.1))
modified to fit the form of Eqn. (4.1),

x[t + 1] = F (x[t], t) + η[t]

y[t] = G(x[t], t) + ϵ[t]).

We have used the extended Kalman filter described in chapter 4 to obtain para-
metric probability functions P (y[t] | y[0 : t], θ) that approximate P (y[t] | y[0 : t], µ),
i.e., the conditional distribution of the measurement at time t given all previ-
ous measurements. Our code for generating sequences of measurements has the
following characteristics:

State

x ≡

x0

x1

x2


Time step We obtain the map F by numerically integrating Eqn. (1.1) for

time intervals of length τs with an absolute error tolerance of 10−8.

iid state noise

η[t] ∼ N

0,

1 0 0
0 1 0
0 0 1

σ2
η


Measurement function A simple projection

G(x) = x0 =
[
1, 0, 0

]
· x

iid measurement noise
ϵ[t] ∼ N (0, σ2

ϵ )

Quantization The observations are quantized with a resolution ∆ = 10−4. We
analyze quantized measurements rather than continuous measurements
because they provide a finite rather than infinite amount of information
and they are characterized by coordinate invariant probability mass func-
tions rather than coordinate dependent probability density functions.

Recall that for the extended Kalman filter the means µγ [t] and variances σ2
γ [t]

completely characterize P (y[t] | y[0 : t], θ) with

P (y[t] | y[0 : t], θ) = N
(
µγ [t], σ2

γ [t]
)∣∣

y[t]
.

(We use a lower case sigma here because the observations are scalars.) We
obtain affine maps for the approximation F (x + δ, t) ≈ [DF (x)] δ + F (x) by
numerically integrating both the Lorenz system and the tangent equations. We
use those approximations with Eqns. (4.23a) and (4.24) on page 66 to implement
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the recursive calculation of µγ [t] and σγ [t] described by Eqns. (4.7) to (4.16) on
page 63.

Figures 5.1 and 5.2 depict a simulation in which dynamical stretching, i.e.,
the linear instability of [DF (x)], occasionally limits predictability. We chose
the parameters, specified in the caption of Fig. 5.1, so that dynamical noise and
measurement quantization are negligible compared to the effects of measurement
noise and dynamical stretching. In the middle plot of Fig. 5.1 notice that while
for most times the forecast deviation of the prediction σγ [t] is very close to the
size of the state noise ToDo: or close to the measurement noise? ση = 0.020,
occasionally the forecast deviations are many times larger. The log likelihood
per time step which appears in the bottom plot of the figure is low when either
the forecast deviations are large or when the difference between the mean of the
forecast and the actual observation is much larger than the predicted deviation,
i.e., σ2

γ [t] << (y[t]− µγ [t])
2
.

The largest excursion of σγ [t] in Fig. 5.1 occurs at t = 20. Figure 5.2
illustrates the stretching action of the map [DF ] that occurs then.

Figure 5.3 illustrates the behavior of −ĥ, the sample average of the log
likelihood of forecasts, for a group of simulations with parameters that are quite
different from those in Figs. 5.1 and 5.2. Given model parameters θ and a
sample sequence y[0 : T ] of length T , we define

−ĥ ≡ 1

T

T−1∑
t=0

log (P (y[t] | y[0 : t], θ))

=
1

T
log (P (y[0 : T ] | θ)) .

The negative of this sample log likelihood is an estimate of the cross entropy
rate

h(µ||θ) ≡ lim
T→∞

− 1

T
Eµ log (P (Y [0 : T ] | θ))

which in turn is bounded from below by the entropy rate. We discuss both
entropy rate and cross entropy rate in Section 5.2, and in Section 5.3 we review
the Pesin Formula. That formula says that the largest Lyapunov exponent λ0, a
characterization of the stretching action of the dynamics, is equal to the entropy
rate, a characterization of the predictability. For good models, we expect the
log likelihood of forecasts to fall off with a slope of −λ0 as the sample time τs
increases, and for the best possible model we expect

h(τs) = λ0τs. (5.1)

We have chosen the parameters2 specified in the caption of Fig. 5.3 with a
measurement quantization size large enough that the log likelihood is limited pri-
marily by dynamical stretching and the Gaussian model for P (y[t] | y[0 : t], θ).

2In making Fig. 5.3, we wanted simulations close to the bound of Eqn. (5.1). We found
that at larger values of τs and ∆, extended Kalman filters performed better if given models
with larger state noise than the noise actually used to generate the data, i.e. σ̃η > ση . We
believe that the effect is the result of the larger errors that occur as the affine approximation
F (x+ δ) ≈ [DF (x)]δ + F (x) fails to track the nonlinearities of the Lorenz system over larger
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−10

0

10 y[t]

−0.05

0.00

0.05

σy[t]

y[t]− µy[t]

0 20 40 60 80 100 120

t

−10

−8

−6

log(Prob(y[t]))

Figure 5.1: Extended Kalman filter for one step forecasting with simulation
parameters:
τs = 0.250 Sample interval
ση = 0.020 Standard deviation of state noise
σϵ = 0.0030 Standard deviation of measurement noise
∆ = 10−4 Measurement quantization

A time series of observations appears in the upper plot. The middle plot char-
acterizes the one-step forecast distributions Pγ (y[t]) ≡ P (y[t] | y[0 : t], θ) =
N
(
µγ [t], σ2

γ [t]
)∣∣

y[t]
. The standard deviations of the forecasts appear in the first

trace, and the differences between the actual observations and the means of the
forecasts appear in the second trace. The logs of the likelihoods of the forecasts,
log(Pγ (y[t])), appear in the bottom plot.
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1.60 1.65

x0(20)

6.80

6.85

6.90

6.95
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7.05

x
2
(2

0)

forecast

update

15.45 15.50 15.55

x0(21)

26.90

26.95

27.00

27.05

27.10

27.15

x
2
(2

1)

forecast

update

Figure 5.2: These plots illustrate dynamical stretching increasing the vari-
ance of the conditional distribution in state space between time steps 20 and
21 in Fig. 5.1. In each plot, the forecast state distribution ellipse represents
Pa (x[t]) ≡ P (x[t] | y[0 : t], θ) = N (µa,Σa)|x[t] and the update state distribu-

tion ellipse represents Pα (x[t]) ≡ P (x[t] | y[0 : t + 1], θ) = N (µα,Σα)|x[t]. For

each distribution, an ellipse depicts the level set (x−µ)⊤Σ−1(x−µ) = 1 in the
x0×x2 plane. To support visual comparisons, the sizes of the ranges for x0 and
x2 are the same in each of the plots. In mapping the updated distribution at
t = 20 (on the left) to the forecast distribution at time t = 21 (on the right),
the function F that implements state dynamics stretches the ellipse by about a
factor of 10 in both directions.
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We are pleased to observe that the overall slope of the plot on the left in Fig. 5.3
is consistent with the estimate λ̂0 = 0.901 (base e) that we obtain using the
Benettin procedure described in Section 5.4.

−5.5−5.0
−4.5

−4.0
−3.5 log 10

(σ̃ε
)

0.0
0.2

0.4τs

−3

−2

−1−
ĥ

0.0 0.2 0.4

τs

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−
ĥ

σε = 10−4

ridge

theory

Figure 5.3: Average log likelihood of one step forecasts as a function of time
step τs and filter parameter σ̃ϵ. To ToDo: Check code that produces these
values simulate measurements for this figure, we used the parameters:
ση = 10−6 Standard deviation of state noise
σϵ = 10−10 Standard deviation of measurement noise
∆ = 10−4 Measurement quantization
T = 200 Number of samples

For both plots, the vertical axis is the average log likelihood of the one-step fore-
cast −ĥ ≡ 1

T

∑T−1
t=0 log (P (y[t] | y[0 : t], θ)). On the left we plot −ĥ as a function

of both τs, the time step, and σ̃ϵ, the standard deviation of the measurement
noise model used by the extended Kalman filter. On the right the top row of
dots indicates the performance of filters that use measurement noise models
that depend on the sampling time through the formula σ̃ϵ(τs) = 10m·τs+b, with
m = 0.4 and b = −4.85 chosen by hand to follow the ridge top in the plot on
the left. Also on the right, the bottom row of dots indicates the performance
of filters that use σ̃ϵ = 10−4, i.e. the measurement quantization level, and the
solid line traces Eqn. (5.2) in the text.

In the plot on the right in Fig. 5.3 we see that for a class of filters in which the
standard deviation of the model measurement noise σ̃ϵ is set to the quantization

intervals in state space. By making σ̃η larger, the errors are accommodated as state noise.
We chose the state noise of the generating process to be an order of magnitude larger than
the absolute integration tolerance of 10−8. We then chose the quantization level and sample
times to be as large as possible, but still small enough that we could have σ̃η = ση without
losing performance. That led to the values σ̃η = ση = 10−6, ∆ = 10−4, and 0 < τs ≤ 0.5.



i
i

“main” — 2025/2/21 — 13:28 — page 81 — #91 i
i

i
i

i
i

5.1. FIDELITY CRITERIA AND ENTROPY 81

size ∆, the log likelihood closely follows the approximation

ĥ(τs) = log

(
erf

(
1

2
√

2

))
+ λ0τs, (5.2)

where erf is the error function3. We explain the nonzero intercept in Eqn. (5.2)
by observing that in the limit of small sampling interval (τs → 0) and zero noise
(ση → 0 and σϵ → 0), only one discrete observation y[t] = ȳ is possible given a
history y[0 : t]. For data drawn from that limiting case, a Kalman filter with
parameters σ̃ϵ = ∆ and ση → 0 would make a forecast with a density P (y[t] |
y[0 : t]) = N

(
ȳ, (∆)2

)∣∣
y[t]

. Integrating that density over the quantization

interval yields

Py[t]|θ(ȳ) =

∫ ȳ+∆
2

ȳ−∆
2

1√
2π(∆)2

e
− (y−ȳ)2

2(∆)2 dy

=

∫ 1
2

− 1
2

1√
2π

e−
1
2 s

2

ds

= erf

(
1

2
√

2

)
≈ 0.3829

log
(
Py[t]|θ(ȳ)

)
≈ −0.9599.

Given the simplicity of the analysis, Eqn. (5.2) fits the simulations in Fig. 5.3
remarkably well.

5.1 Fidelity Criteria and Entropy

Stochastic models are fit to an enormous variety of measured phenomena and
the most appropriate measure of the fidelity of a model to measurements de-
pends on the application. Such phenomena include long and short term weather,
financial markets, computer data, electric power demand, and signals and noise
in communication or instrumentation. In many cases one makes decisions based
on a model and those decisions change the cost of future events. The expected
cost of basing decisions on a model P∗|θ depends in a complicated fashion on
many factors including how the cost of acting on a decision depends on lead time
and which aspects of the modeled phenomenon are important. For the Lorenz
example at the beginning of this chapter we implicitly assumed stationarity
and ergodicity and characterized model quality in terms of the average of the
log of the likelihood. For a stationary ergodic system, the log-likelihood is tied
to D(µ||θ), the relative entropy of the model P∗|θ given P∗|µ (see Eqn. (5.5)).
Although relative entropy is not an appropriate performance measure for every
application, it is a common tool for problems in information theory and statis-
tics. See Cover and Thomas[1] for many of these including the application of

3The error function is defined by erf(x) = 2√
π

∫ x
0 e−t2dt.
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relative entropy to a theory of gambling. Relative entropy is exactly the right
performance measure for data compression. The arithmetic coding algorithm
(see the review by Witten, Neal, and Cleary[21]) for compressing a sequence of
symbols uses a model P∗|θ to make decisions that affect the cost in a manner
that depends on the symbol values that actually occur. The relative entropy
D(µ||θ) is the expected value of the number of bits wasted by the algorithm if it
uses a model P∗|θ for decisions when in fact P∗|µ is true. More accurate models
lead to better compression.

5.1.1 Definitions

Now, to solidify the discussion, we make some formal definitions.

Stochastic process

We are interested in sequences of states X[0 : T ] and measurements Y [0 : T ] each
of which can be thought of as a random function on the domain {1, 2, . . . , T},
i.e., a stochastic process.

Entropy of a discrete random variable

If a discrete random variable U takes on the values u0, u1, . . . , un with proba-
bilities P (u0), P (u1), . . . , P (un), then the entropy of U is ToDo: should sum
be from 0?

H(U) ≡ −E log (P (U)) = −
n∑

k=1

P (uk) log (P (uk)) . (5.3)

Entropy quantifies the the uncertainty in U before its value is known and the
information or degree of surprise in discovering its value. If the base of the
logarithm in Eqn. (5.3) is 2, then the units of H(U) are called bits. We will use
natural logarithms with Euler constant e as the base. For natural logarithms
the units of H(U) are called nats.

Differential entropy of a continuous random variable

If U is a continuous random variable with a probability density function P then
the differential entropy of U is

H̃(U) ≡ −E log (P (U)) = −
∫

P (u) log (P (u)) du. (5.4)

Notice that the differential entropy depends on the coordinates of U .

Conditional entropy

The conditional entropy of U given V is

H(U |V ) ≡ −E log (P (U |V )) = −
∑
i,j

P (ui, vj) log (P (ui|vj)) .
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Factoring the probability of sequences

Pz[0:T ] = Pz[0]

T−1∏
t=0

Pz[t]|z[0:t]

is equivalent analyzing entropy into the sum

H(Z[0 : T ]) = H(Z[0]) +

T−1∑
t=1

H (Z[t]|Z[0 : t]) .

Relative entropy of two probability functions

The relative entropy between two probability functions P∗|µ and P∗|θ with the
same domain Z is

D(µ||θ) ≡ Eµ log

(
P (Z | µ)

P (Z | θ)

)
(5.5)

=
∑
z∈Z

P (z | µ) log

(
P (z | µ)

P (z | θ)

)
.

The relative entropy is coordinate independent. The relative entropy between
two probability functions P∗|µ and P∗|θ is never negative and is zero if and only
if the functions are the same on all sets with finite probability. We use D(µ||θ)
to characterize the fidelity of a model P∗|θ to a true distribution P∗|µ

Cross entropy of two probability functions

While some authors use the terms relative entropy and cross entropy inter-
changeably to mean the quantity D(µ||θ) that we defined in Eqn.(5.5), we define
the cross entropy to be

H(µ||θ) ≡ −Eµ log (P (Z | θ)) (5.6)

= −
∑
z∈Z

P (z | µ) log(P (z | θ))

and note that
D(µ||θ) = H(µ||θ)−H(µ).

The cross entropy is the negative expected log-likelihood of a model. It is greater
than the entropy unless the model P∗|θ is the same as P∗|µ for all sets with finite
probability.

Stationary

A stochastic process is stationary if probabilities are unchanged by constant
shifts in time, i.e., for any two integers T ≥ 1 and τ ≥ 0

PZ[0:T ] = PZ[0+τ :T+τ ].
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Ergodic

Roughly, in an ergodic process you can get anywhere from anywhere else. Let
X be the set of states for a stationary stochastic process with probabilities P∗|µ.
The process is ergodic if for any two subsets of X , A and B with P (A | µ) > 0
and P (B | µ) > 0 there is a time T such that the probability of going from set A
to set B in time T is greater than zero. Birkhoff’s ergodic theorem says that for
an ergodic process, time averages converge to expected values with probability
one.

Entropy rate

For a discrete stochastic process X, the entropy rate is

h(X) ≡ lim
T→∞

1

T
H(X[0 : T ]). (5.7)

If the process is stationary

h(X) = lim
T→∞

H(X[T ]|X[0 : T ]). (5.8)

If the process is stationary and Markov

h(X) = H(X[T + 1]|X[T ]) ∀T. (5.9)

And if the process is ergodic

h(X) = lim
T→∞

− 1

T
log (P (x[0 : T ] | µ)) (5.10)

with probability one.
We similarly define the relative entropy rate and the cross entropy rate. For

an ergodic process X with true probabilities P∗|µ and model probabilities P∗|θ

h(µ||θ) ≡ lim
T→∞

− 1

T
Eµ log (P (X[0 : T ] | θ)) (5.11)

= lim
T→∞

− 1

T
log (P (x[0 : T ] | θ))

with probability one.

Entropy rate of a partition B
Let X , the set of states for a stationary stochastic process with probabilities P∗|µ,
be a continuum, and let B = {β0, β1, . . . βn} be a partition of X into a finite
number of non-overlapping subsets. By setting b[t] to the index of the element
of B into which x[t] falls, we can map any sequence x[0 : T ] into a sequence
b[0 : T ] thus defining a discrete stationary stochastic process B. Applying the
definition of entropy rate to the process B yields the definition of the entropy
rate as a function of partition B. Suppose in particular that on some set X the
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map F : X 7→ X and the probability P∗|µ define an ergodic process, that B is a
partition of X , and that the model probability function P∗|θ assigns probabilities
to sequences of partition indices b[0 : T ]. We define the entropy rate h(B, F, µ)
and the cross entropy rate h(B, F, µ||θ) as follows

h(B, F, µ) ≡ lim
T→∞

1

T
H(B[0 : T ]) (5.12)

= lim
T→∞

− 1

T
Eµ log (P (B[0 : T ] | µ))

h(B, F, µ||θ) ≡ lim
T→∞

− 1

T
Eµ log (P (B[0 : T ] | θ)) .

Kolmogorov Sinai entropy hKS

As before, suppose that on some set X , the map F : X 7→ X and the probability
P∗|µ define an ergodic process. The least upper bound over all partitions B on
the entropy rate h(B, F, µ) is the called the Kolmogorov Sinai entropy

hKS(F, µ) ≡ sup
B

h(B, F, µ). (5.13)

5.2 Stretching and Entropy

Here we will outline theory that connects ideas from dynamics to ideas from
probability. The main results say that average dynamical stretching (Lyapunov
exponents) is proportional to average uncertainty (entropy) in measurement
sequences. First we will give some examples, then we will quote definitions and
theorems without proof.

5.2.1 Maps of the unit circle

Two x mod one

The map of the unit interval [0, 1) into itself defined by

x[n + 1] = F2(x[n]) (5.14)

≡ 2x mod 1 (5.15)

is continuous if we identify the points 0 and 1. Notice that if we use the partition

B2 =

{
β0 = [0,

1

2
), β1 = [

1

2
, 1)

}
, (5.16)

a symbol sequence b[0 : ∞] provides the coefficients of a base two power series
that identifies the starting point, i.e.

x[0] =

∞∑
t=0

b[t]

(
1

2

)t+1

.

Further, if we assign a uniform probability measure µ to the interval, then

hKS(F2, µ) = h(B2, F, µ) = log(2).
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Three x mod one

Analogously, by defining the map

x[n + 1] = F3(x[n]) (5.17)

≡ 3x mod 1, (5.18)

and using the partition

B3 =

{
β0 = [0,

1

3
), β1 = [

1

3
,

2

3
), β2 = [

2

3
, 1)

}
(5.19)

and a uniform probability measure µ, we find

hKS(F3, µ) = h(B3, F3, µ) = log(3).

This is the result that motivated Kolmogorov and Sinai to define the en-
tropy hKS . They were addressing the isomorphism problem, e.g., “Is there a
relabeling of points in the unit interval that makes F2 the same as F3?”. Since
the characteristic hKS is independent of the coordinates or labeling used, the
fact that hKS(F3, µ) ̸= hKS(F2, µ) provided a negative answer to the question.

Notice that the Kolmogorov entropy is equal to the average of the log of
the slope of the map. Specifically, the slope of F2 is 2 and hKS(F2, µ) = log(2)
while the slope of F3 is 3 and hKS(F3, µ) = log(3). The rule that entropy is
proportional to the log of the average slope is not true in general. The next
example provides a counter example and suggests a correction factor.

Dynamics on a Cantor set

While every point in the entire unit interval can be represented as a base three
power series, i.e.

∀x ∈ [0, 1), ∃d∞0 : x =

∞∑
t

d[t]

(
1

3

)t+1

with d[t] ∈ {0, 1, 2} ∀t,

the middle third Cantor set consists of the points in the unit interval that can be
represented as base three power series that exclude the digit “1”. The symbol
sequences produced by applying the map F3 and partition B3 to the middle
third Cantor set are the sequences of coefficients in the base three expansions of
the starting points, i.e., they consist exclusively of 0′s and 2′s. Given any finite
sequence d[0 : n], we define the set of infinite coefficient sequences {d[0 : n], . . .}
as those that begin with the sequence d[0 : n]. Now we define a probability
measure µc in terms of such sets of infinite sequences,

µc ({d[0 : n], . . .}) ≡
{

2−(n+1) if “1” does not appear in d[0 : n]

0 if “1” does appear in d[0 : n]
(5.20)

With this measure we find

hKS(F3, µc) = log(2).
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The following isomorphism or relabeling of the unit interval connects (F2, µ)
to (F3, µc):

1. Find the binary expansion b[0 :∞] of the original point x

2. Create a new sequence d[0 : ∞] by replacing every occurrence of “1” in
b[0 :∞] with “2”

3. Map x to y where y is described by the base three expansion d[0 :∞]

The Hausdorff dimension4 of the middle third Cantor set is δ = log(2)
log(3) , and

that is the factor that is missing in the formula connecting entropy and stretch-
ing.

hKS(F3, µc) = log(2)

=
log(2)

log(3)
log(3)

= δ log(stretching factor) (5.21)

Now we turn to the definitions and theorems that express the above idea pre-
cisely.

5.3 Lyapunov Exponents and Pesin’s Formula

Vixie[24] has reviewed the work of Ruelle[43], Pesin[40], Young[22], and others
who established the relationship between smooth dynamics and entropy. Here
we reiterate a few of those results using the following notation:

X An n-dimensional manifold

F : X 7→ X An invertible C2 (continuous with continuous first and second deriva-
tives) map of the manifold into itself

µ A probability measure on X that is invariant under F

x A point on the manifold

TX(x) The tangent space of X at x

v An element of TX(x)

We define the asymptotic growth rate of the direction v at x as

λ(F, x, v) ≡ lim
t→∞

1

t
log
(∥∥[DF t(x)]v

∥∥) . (5.22)

4Sets and characteristics of sets with non-integer dimensions are sometimes called fractal.
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Oseledec’s theorem [22, 6, 7] says that at almost every x the limit exists for
every v, and that although the value of the limit depends on v, that as v varies,
it only takes on r ≤ n discrete values called the spectrum of Lyapunov exponents

λ0(F, x) > λ1(F, x) > ... > λr(F, x). (5.23)

The tangent space TX(x) is the direct sum of subspaces Ei ⊂ TX(x) associated
with each exponent, with

λ(F, x, v) = λi(F, x) ∀v ∈ Ei

and

TX(x) =

r−1⊕
i=0

Ei.

The dimension of Ei is called the multiplicity mi of the exponent λi. If µ is er-
godic with respect to F , then the spectrum {λi} is the same almost everywhere.

We want to use Pesin’s formula[40] which implies that if µ is smooth and er-
godic, then the entropy is equal to the sum of the positive Lyapunov exponents,
i.e.

hKS(F, µ) =
∑

i:λi>0

miλi. (5.24)

In light of the correction for fractal dimension that we saw in Eqn. (5.21) and the
ubiquity of fractal measures in chaotic systems, we should review Ledrappier and
Young’s explanation (See [22] for an overview) of the effect of fractal measures
on Pesin’s formula.

Ledrappier and Young’s formula is given in terms of the dimensions of the
conditional measures on the nested family of unstable foliations of F . For a
point x ∈ X and i such that λi > 0 we define

W i(x) ≡
{
y ∈ X such that lim

n→∞
sup

1

t
log
(
d
(
F−t(x), F−t(y)

))
< −λi

}
.

(5.25)
For an intuitive picture, consider a trajectory x(t) that passes through x at time
t = 0; any trajectory y(t) that has separated from x(t) at a rate of at least λi,
passes through the manifold W i(x) at time t = 0.

Let δi be the Hausdorff dimension of the conditional measure that µ defines
on W i(x). For an ergodic µ, δi will be constant almost everywhere. Further,
let γi be the incremental dimension

γi ≡
{
δ0 i = 0

δi − δi−1 i > 0

Now Ledrappier and Young’s formula is

hKS(F, µ) =
∑

i:λi>0

λiγi. (5.26)
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Note that Pesin’s formula holds if the measure µ is smooth in the unsta-
ble directions. Such measures are called SRB (Sinai Ruelle Bowen) measures.
Tucker has found that the Lorenz system has an SRB measure and says that
numerical simulations of Lorenz’s system are “real” [46].

5.3.1 A theoretical bound on model likelihood

Now we have the terms that we need to discuss theoretical bounds on the ex-
pected log likelihood of models of discrete observations of a chaotic dynamical
system. Given X, F , and µ as described above, if the multiplicity of each
exponent is mi = 1 then we know:

h(B, F, µ) ≡ − lim
t→∞

Eµ log (P (b[t] | b[0 : t], µ)) (5.27)

h(B, F, µ||θ) ≡ − lim
t→∞

Eµ log (P (b[t] | b[0 : t], θ)) (5.28)

h(B, F, µ) ≤ h(B, F, µ||θ) Equality ⇐⇒ θ = µ a.e.
(5.29)

h(B, F, µ) ≤ hKS(F, µ) Equality ⇐⇒ B generating
(5.30)

hKS(F, µ) =
∑

i:λi>0

λiγi (5.31)

hKS(F, µ) ≤
∑

i:λi>0

λi µ smooth on W i ⇒ Equality

(5.32)

with the following justifications

(5.27) and (5.28): Definition

(5.29): Gibbs inequality, (2.54)

(5.30): The definition of hKS(F, µ) is that it is the supremum over all partitions
B

(5.31): This is Ledrappier and Young’s formula (5.26)

(5.32): Because in (5.31) 0 ≤ γi ≤ 1 ∀i

Thus we have the following two theorems:

Theorem 1 (Lyapunov exponent bound on likelihood) If µ is ergodic and
smooth in the unstable directions and B is a generating partition, then for any
model θ of the stochastic process B consisting of F, µ, and B

h(B, F, µ||θ) ≥
∑

i:λi>0

λi = h(B, F, µ) (5.33)
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Theorem 2 (Entropy gap) If µ is ergodic (not necessarily smooth in the un-
stable directions). Then for an optimal model θ of the stochastic process B
consisting of F, µ, and B (B not necessarily generating)

h(B, F, µ||θ) = h(B, F, µ) ≤ χ ≡
∑

i:λi>0

λi (5.34)

and if for some other model ν

h(B, F, µ||ν) ≥ χ (5.35)

then the model ν is not optimal.

In the next section, we will describe a numerical procedure for estimating
Lyapunov exponents, and in the following section we will argue that one can
reasonably use Eqn. (5.35) with numerical simulations to quantitatively charac-
terize the non-optimality of a model.

5.4 Benettin’s Procedure for Calculating Lya-
punov Exponents Numerically

We begin reviewing Benettin’s procedure[27] for estimating Lyapunov exponents
by using the Lorenz system as an example. The Lorenz system is

ẋ = F (x) =

 s(x1 − x0)
x0(r − x2)− x1

x0x1 − bx2.

 (5.36a)

Note that

DF (x) =

 −s s 0
r − x2 −1 −x0

x1 x0 −b

 (5.36b)

where (DF (x))i,j ≡
∂Fi(x)
∂xj

. Let Φ denote solutions to the differential equation

with
x[τ ] ≡ Φ(x[0], τ).

Lyapunov exponents are defined (recall Eqn. (5.22)) in terms of the long time
behavior of the derivative matrix

D[x[0], τ ] ≡ Dx[0]Φ(x[0], τ).

Interchanging the order of differentiation with respect to x[0] and τ and applying
the chain rule yields a linear differential equation for D:

Ḋ(x[0], τ) =
d

dτ
Dx[0]Φ(x[0], τ)

= DF (x)|x=Φ(x[0],τ)D(x[0], τ).
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Thus, given initial conditions x[0] and D[0] = I one can use an off-the-shelf

routine to find

[
x[τ ]
D[τ ]

]
by integrating

˙[
x[τ ]
D[τ ]

]
=

[
F (x)

[DF (x)]D

]
. (5.37)

Given a computer with infinite precision, for a range of time intervals τ , one
could:

1. Integrate Eqn. (5.37) to obtain D[τ ]

2. Do singular value decompositions (SVD’s)

U [τ ]S[τ ]V ⊤[τ ] = D[τ ], (5.38)

where U [τ ] and V [τ ] are orthogonal and S[τ ] is diagonal

3. Look for approximate convergence of the finite time Lyapunov exponent
estimates:

λ̃i[τ ] ≡ 1

τ
log(Si,i[τ ]). (5.39)

On a real computer, the procedure fails because the ratio of the largest and

smallest singular values S0[τ ]
Sd[τ ]

grows exponentially with τ and becomes larger

than the precision of the machine.
Rather than using an SVD decomposition for each τ in step 2 above, one

could use a QR decomposition:

Q[τ ]R[τ ] = D[τ ]. (5.40)

A QR decomposition factors the matrix D[τ ] into a product of two matrices
the first of which Q[τ ] is orthogonal and the second of which R[τ ] is upper
triangular. One could use the intuitive Gram Schmidt procedure, but there are
algorithms that behave better numerically (see, e.g. [4] or [12]). Although the
diagonal elements of R[τ ] are not equal to the diagonal elements of S[τ ], the
finite time estimates

λ̂i[τ ] ≡ 1

τ
log(|Ri,i[τ ]|) (5.41)

and the λ̃i[τ ] defined in Eqn. (5.39) converge to the same values5.
Using Eqn. (5.41) does not address the problem of finite machine precision

for long time intervals τ , but Benettin et al. recommend calculating log(|Ri,i[τ ]|)
5In the SVD of Eqn. (5.38), the first column of V [τ ] specifies the direction of the initial

vector in the tangent space with the largest stretching. The exponential stretching rate is the
Lyapunov exponent λ0. However, with probability one, a randomly chosen vector will have
the same stretching rate. The estimate λ̂0[τ ] of Eqn (5.41) is based on the stretching rate of
the first standard basis vector, i.e., [1, 0, 0]. Similar arguments using the growth rates of areas,

volumes, hyper-volumes, etc. support using the estimates λ̂i[τ ] of Eqn (5.41) for i = 2, 3, . . .
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by breaking the interval into N smaller steps of duration ∆τ in a way that does
address finite precision. Letting A[n] denote the one time step derivative

A[n] ≡ DΦ(x[(n− 1)∆τ ],∆τ) (5.42)

the chain rule implies

DΦ(x[0], N∆τ) =

N∏
n=1

A[n].

If, for each n, one calculates6 the pair (Q[n], r[n]) defined by

Q[0] = I

Q[n]r[n] ≡ A[n]Q[n− 1],

where Q[n] and r[n] are obtained by a QR factorization of the product A[n]Q[n− 1],
then induction yields

N∏
n=1

A[n] = Q[N ]

N∏
n=1

r[n].

Since
∏N

n=1 r[n] is upper triangular, we have the QR factorization

DΦ(x[0], N∆τ) = Q[N ]R[N ] (5.43)

R[N ] =

N∏
n=1

r[n]. (5.44)

Because the diagonal elements are the products Ri,i[N ] =
∏N

n=1 ri,i[n], their
logs are the sums

log(|Ri,i[n]|) =

N∑
n=1

log(|ri,i[n]|). (5.45)

Substituting this result into Eqn. (5.41) constitutes the Benettin procedure. The
action of a matrix on a unit square is factored into components Q and R and
sketched in Fig. 5.4. Results of applying the procedure to the Lorenz system
appear in Fig. 5.5.

6To calculate Q[n] and r[n] for each n, one can either:

1. Integrate Eqn. (5.37) for a time interval ∆τ with the initial condition

[
x[(n− 1)∆τ ]

Q[n− 1]

]
to obtain

[
x[n∆τ ]

A[n]Q[n− 1]

]
and then calculate a QR factorization of A[n]Q[n− 1], the

second component of the result.

2. As above, but use the identity matrix instead of Q[n− 1] as the second component of

the initial condition for the integration which yields the result

[
x[n∆τ ]
A[n]

]
, then calculate

a QR factorization of the product A[n]Q[n− 1]
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[[
e0
] [

e1
]]

R
[[
e0
] [

e1
]]

QR
[[
e0
] [

e1
]]

[
3 0.25
−4 0

][
5 0.15
0 0.2

][
1 0
0 1

]

Figure 5.4: The action of the Q R factors of a matrix on a unit square. Here

A =

[
3 0.25
−4 0

]
, Q =

[
0.6 0.8
−0.8 0.6

]
, and R =

[
5 0.15
0 0.2

]
. R stretches the

x component by a factor of five and shears y components in the x direction
and shrinks them by a factor of five with a net effect of preserving areas (The
determinants of A and R are both 1.0). Q simply rotates the stretched figure.
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5.5 A Practical Performance Bound

Consider the following two cases:

• State space dynamics perturbed by noise

• Simulated dynamics perturbed by numerical truncation

The definition of Kolmogorov Sinai entropy in the two cases yields extremely
different answers. If the perturbations are random noise, then the supremum of
h(B, F, µ) over B does not exist and hKS is unbounded. On the other hand, if the
perturbations are numerical truncation and the process is a digital simulation,
then all observation sequences converge to periodic cycles and hKS = 0. Thus,
the strict definition of the Kolmogorov Sinai entropy is useless as a bound on
the cross entropy of models in numerical simulations. Here we argue however,
that numerical Lyapunov exponent estimates nonetheless provide a practical
reference for the performance of models.

If you are working on a new model building procedure that takes training
samples {y[τ0 : T0], y[τ1 : T1], . . . , y[τN : TN ], } and produces a family of param-
eterized conditional probability functions P (y[t] | y[0 : t], θ), we recommend nu-
merically estimating the entropy gap (see Theorem 2) δµ||θ = h(B, F, µ||θ) −∑

i:λi>0 λi to characterize the fidelity of the resulting models θ to generating
processes. As a debugging tool, it is reasonable to choose some parameters θ′

for a model class, use that model to generate training data, and then verify
that as the size of the training data set increases the proposed model building
procedure recovers the parameters θ′. However such a test fails to consider
how well the proposed procedure and model class work on the realistic case of
data generated by processes outside the model class. Even though the test we
propose does not provide correct model parameters against which to compare
fitted parameters, it does provide a reference against which to compare model
performance. Specifically, we advocate the following numerical experiment for
evaluating a model building procedure:

1. Use Φ obtained by numerically integrating a chaotic dynamical system
with a sampling interval ∆τ to generate training data and testing data.
For simplicity, consider a system with a single positive exponent λ0

2. Quantize the data with a partition B

3. Run the Benettin procedure on the system, to estimate Lyapunov expo-
nents

4. Substitute the estimated exponents into Ledrappier and Young’s formula,
Eqn. (5.26) with γ0 = 1 to get ĥ(Φ, µ)) = λ̂0, an estimated entropy rate.

If B is fine enough or a generating partition, ĥ(B,Φ, µ)) = λ̂0 will be a
good estimate.

5. Produce P∗|θ by applying the new model building procedure to the training
data
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6. Estimate the cross entropy by evaluating the likelihood of the model on
long sequences of testing data

ĥ(B,Φ, µ||θ) =
−1

T

T∑
t=1

log (P (y[t] | y[0 : t], θ)) (5.46)

7. Calculate an entropy gap by subtracting the two estimates

δ̂µ||θ = ĥ(B,Φ, µ||θ)− ĥ(B,Φ, µ)).

For an optimal model, expect the gap to be zero. If the gap is much larger
than zero, conclude that the new procedure is suboptimal.

The test is reasonable only if, subject to some constraints, Eδ̂µ||θ ≥ 0 is a tight

bound and the variance of δ̂µ||θ is small. Below, we argue that a model that
uses knowledge of the generating process and has smooth probability densities
in state space achieves the bound with equality and thus the bound is tight.

In this class of models, the probability measure for the generating process is
not necessarily ergodic or even stationary; it is derived from a uniform density
over a box that covers possible starting conditions, and it includes a little bit
of noise ToDo: I don’t like a little bit of noise. in the dynamics so that even
in the long time limit it does not become fractal. Because the probability is
smooth, the models cannot exploit fractal properties that might exist in the
modeled system and consequently γ, the Ledrappier and Young correction to
the Pesin formula, is irrelevant. More specifically we consider a model class with
the following properties:

Probability density The probability density for the initial state P (x[1] | θ) is
a uniform distribution on a cube in X that has length Li.c. on each side.

State noise The model has noise in the state dynamics,

x[t + 1] = Φ(x[t]) + η[t], (5.47)

where η[t] are i. i. d. Gaussian with η[t] ∼ N (0, Iσ2
η). We suppose that Φ

is the same as the true function of the modeled system, but that noise in
the modeled system is smaller or zero.

Measurement function We let the measurement function be the same for the
model as for the true system, i.e., a discrete partition with resolution ∆.
We have in mind a uniform quantization of a single component of X such
as we used for Fig. 5.3.

The only difference between the true system and the model is that the state
noise in the model may be larger than the state noise in the true system.

With this framework we can draw samples randomly from a true distribution
P∗|µ and consider model probabilities P∗|θ without having to find a stationary
distribution. In sidestepping the key issue of a stationary distribution, we have
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sacrificed ergodicity which is the basis of the definition of a Lyapunov exponent
as a global property. Empirically, however, the convergence of the Benettin
procedure is similar for any initial condition (See Fig. 5.5). Relying on this
empirical observation, we suppose for some time interval τ that the stretching
factor is roughly independent of initial conditions with

S[τ ] ≈
τ−1∏
t=1

r0,0[t] = eλ̂τ . (5.48)

In the limit of small noise ση → 0, one can calculate P (y[0 : T ] | θ) for any
sequence of observations as the probability of the set of initial conditions that
are consistent with y[0 : T ], i.e., the pre-image of y[0 : T ],

P (y[0 : T ] | θ) =

∫
{x:Y [0:T ](x)=y[0:T ]}

P (x | θ)dx.

For a d dimensional system, the volume of such pre-images is typically

∆e−λ̂T

O(T d)
< Vol < ∆e−λ̂T ,

and since the density of initial conditions is smooth, for large T we find

1

T
log (P (y[0 : T ] | θ)) ≈ −λ̂. (5.49a)

Rather than going backwards in time to analyze the pre-image of y[0 : T ], we
can think about the forward image of the volume of initial conditions under the
map Φ(T ). To first order, the distribution is a uniform probability density over
a parallelepiped ToDo: What is Li.c.? that extends a distance Li.c.s[T ] in the
direction of the first column of the orthogonal matrix Q[t] in Eqn. (5.43). The
measurement partition divides the image into elements that have a characteristic
size of ∆, yielding

1

T
log (P (y[0 : T ] | θ)) ≈ −λ̂ (5.49b)

again. Given the enormous stretching that occurs, it is clear that the image of
the volume of allowed initial conditions will resemble steel wool more than a
parallelepiped, but the exponential nature of the stretching is all that matters,
and in the small noise limit we have

h(B,Φ, µ||θ) ≈ λ̂ (5.50)

One might wonder whether finite state noise ση invalidates (5.50) or if per-

haps a correction of order
ση

∆ will suffice. As long as ση << Li.c.e
λ̂T , the

analysis of the size of the image of the volume of initial conditions under Φ(T )
that leads to (5.49b) is adequate. The noise term ση in the model will however
transfer probability from observation sequences permitted by the true system
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to sequences that it does not allow, thereby increasing the cross entropy. At
each time step the effect roughly augments the stretching in each state space
direction with a term of size

ση

∆ . Since the noise at each time is independent of
the noise at all other times, the effects add in quadrature. We can estimate an
upper bound on the total effect by replacing |ri,i[n]| with |ri,i[n]|+ ση

∆ for each
i and n in Eqn. (5.45) of the Benettin procedure, i.e.,

λ̂aug,i ≡
1

N

N∑
n=1

log(|ri,i[n]|+ ση

∆
). (5.51)

Notice that knowledge of λ̂i and
ση

∆ , is not sufficient to calculate λ̂aug,i. If the
stretching were uniform with |ri,i[n]| = eλ ∀n, the augmented result would be

λ̂aug,i = log
(
eλ +

ση

∆

)
, but the result increases without bound7 as |ri,i[n]| varies

more with n. In Fig. 5.5 we compare λ̂aug,1 with λ̂1 for the Lorenz system.
For noise with an amplitude

ση

∆ = 0.0100, the figure indicates an augmentation

of λ̂aug,0 − λ̂0 ≈ 0.068, which is roughly an order of magnitude larger than
the augmentation that uniform stretching would produce. From the figure, we
conclude that the Benettin procedure produces a robust practical upper bound
on model performance.

Specifically, integrating the Lorenz system, (5.36), over intervals of ∆τ =
0.150 to create Φ we find

λ̂0(Φ) = 0.135 nats = 0.195 bits

λ̂0(F ) =
λ̂0(Φ)

∆τ
= 0.901 nats

which is close to the value of 0.906 obtained by more careful calculations.

5.6 Approaching the Bound

Although the slope of the plot in Fig. 5.3 (the log likelihood per time step
attained by extended Kalman filters) matches the entropy bound, and we are
satisfied with our explanation of the nonzero intercept, an example of a model
with a likelihood close to the bound without any offset would be more satisfying.
To find such model, we return to the source of coarsely quantized Lorenz ob-
servations that we used for Fig. 1.10 in the introduction. That figure illustrates

7If,

|ri,i[n]| =
{

1
δN−1 e

λ n = 1

δeλ otherwise
,

then
∏N

n=1 |ri,i[n]| = eNλ and λ̂i = λ, but

λ̂aug,i =
1

N

(
log

(
eλ

δN−1
+

ση

∆

)
+ (N − 1) log

(
δeλ +

ση

∆

))
lim
δ→0

=
1

N

(
λ+ (N − 1) log

( ση

δ∆

))
→ ∞.
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the association of each of the twelve discrete hidden states of an HMM with
particular regions in R3, the state space of the Lorenz system. Although the
cross entropy of that twelve state model is not very close to the bound based
on our Lyapunov exponent estimate, it seems plausible that by using HMMs
with more states we might get higher likelihoods. In fact it is true, but we are
surprised at how many states we need. As for Fig. 1.10, we generated the ob-
servations by integrating the Lorenz system with a time step of τsample = 0.150
and quantized the first component into one of 4 levels.

Our first attempt was to train a sequence of models with ever more hidden
states. We initialized each model randomly and ran many iterations of the
Baum-Welch algorithm on quantized observations. Even with many iterations,
we did not build any promising models.

In our second attempt, we exploited our knowledge of the Lorenz dynamics
in X = R3 as follows:

1. Generate training data x[0 : T ] and y[0 : T ] by integrating the Lorenz sys-
tem. Here x[t] is a point in the original state space and y[t] is a quantized
observation that can take one of four values.

2. Generate testing data y[T : T + N ] by continuing the integration.

3. Find a set of discrete states {s0, s1, . . . , sm} by partitioning the original
space with a uniform grid of resolution ∆x. We only constructed states
for those partition elements that were occupied by at least one member of
x[0 : T ].

4. Build an HMM using the training sequence. We set the state transition
probabilities by counting the frequency with which the partitioned X se-
quence made each possible transition. Similarly, we set the observation
model by counting the frequency with which each partition element was
associated with each possible observation.

5. Estimate the cross entropy (ĥ(B, F, µ||θ) See Eqn. (5.46)) of the model by
calculating its log likelihood per time step on the testing data.

As hoped, we found that as we reduced the resolution, the number of states
increased and the cross entropy estimates decreased. Since there is no training,
i.e., Baum-Welch iterations, in this procedure, we could calculate the likelihood
with a variant of the forward algorithm that does not store or return α or γ
values for the entire sequence. In fact, given typical observations y[0 : t + 1]
up to time t, only a small fraction of the states have nonzero probability. Code
that uses sparse matrices to exploit these features is many orders of magnitude
cheaper than vanilla code for the forward algorithm.

Results of the procedure appear in Fig. 5.6. For the rightmost point on
the curve8 we found a model with 4,890,280 hidden states and a cross entropy,

8While the address space limit of 32 bit Python constrained the number of states for
the first edition of this book to about 1,500,000, computation time constrains the number
of number of states in 2025. Using a high end 2023 desktop computer, it takes about 100
minutes to generate Fig. 5.6.
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ĥ(B,Φ, µ||θ), of 0.150 nats or 0.216 bits. By connecting this model to a simple
data compression routine one could compress the test data (or presumably any
other long sequence from the source) down to 0.216 bits per sample, which is
11% more than the 0.195 bits per sample that the Lyapunov exponent estimate
suggests is possible.
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Figure 5.5: The effect of noise on Lyapunov exponent calculations for the Lorenz
system. In the upper plot, the colored lines trace 1

T

∑T−1
t=0 log (|r0,0[t]|) (See

Eqn. (5.45)) for three different initial conditions and the black lines trace the
5% and 95% limits on 1,000 separate runs. The lower plot is the same except
that |r0,0[t]| is augmented by a noise term with amplitude

ση

∆ = 0.0100 (See
Eqn. (5.51)). At τ = 300.0 the Laypunov exponent estimates from the upper
and lower plots are 0.899±0.0100 and 0.967±0.0100 respectively. The difference
gives an indication of the sensitivity of the estimates to noise.
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Figure 5.6: Entropy gap, δ̂µ||θ vs number of states in HMMs. The upper curve

indicates estimates of cross entropy ĥ(B, F, µ||θ) for a sequence of HMMs vs the
number of discrete states in the models. We built the models using simulated
Lorenz state space trajectories as described in the text. The lower line indicates
an estimate of the entropy rate, ĥ(F, µ)) = λ̂0, of the true process based on Lya-
punov exponents estimated by the Benettin procedure. The distance between
the curves is the entropy gap δ̂µ||θ. The gap seems to be going to zero, sug-
gesting that an HMM with enough states would perform at least as well as any
other model based any other technology. Each model was built using the same
10,000,000 sample trajectory in the original state space, and the cross entropy
estimates are based on a test sequence of 10,000 observations.
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Chapter 6

Obstructive Sleep Apnea

The challenge for the Computers in Cardiology meeting in 2000 (CINC2000)
was to identify obstructive sleep apnea on the basis of electrocardiograms alone.
Our colleague James McNames at Portland State University, with some support
from us, won the prize for the best minute by minute analysis of data. We
prepared our first entry using HMMs, and McNames prepared the subsequent
(and winning) entries by hand using spectrograms1 to visualize the data.

In preparing the first entry, we noticed that apnea produced many different
characteristics in heart rate time series while the characteristics in non-apnea
times were more similar to each other. We used a larger number of states in
HMMs to model the various characteristics of apnea and a smaller number of
states to model the more consistent normal times. However using the maximum
a posteriori probability (MAP) estimate sequence of states from the Viterbi
algorithm, ie,

ŝ[0 : T ] ≡ argmax
s[0:T ]

P (s[0 : T ] | y[0 : T ])

to estimate the sequence of classifications ˆc[0 : T ] with

ĉ[t] ≡ c : ŝ[t] ∈ c

produced obvious errors. We found that during many periods of apnea the
probability of being in each of the apnea states was lower than the probability
of being in the normal state with the highest probability while the sum of the
probabilities of apnea states was larger than the sum over normal states. Our
effort to model the diversity of apnea characteristics led to decoded sequences
that were normal too often.

We tried to address the issue by estimating the MAP sequence of classes
rather than the MAP sequence of states, ie,

ĉ[0 : T ] ≡ argmax
c[0:T ]

P (c[0 : T ] | y[0 : T ]) . (6.1)

1A spectrogram is display of power in Fourier spectral bands as a function of time. The
x-axis is time, the y-axis is frequency, and the image intensity at point (t, f) is the power in
that frequency estimated in a window centered at that time.

103
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While the computational complexity of Viterbi algorithm which finds the MAP
sequence of states is linear in T , the length of the sequence of observations, the
computational complexity required to solve (6.1) is exponential2 in T .

In this chapter, we will first describe the CINC2000 challenge and how Mc-
Names addressed it. Then we will address the challenge using HMMs.

6.1 The Challenge and the Data

The PhysioNet website3 announced the challenge and described the data as
follows:

Introduction: Obstructive sleep apnea (intermittent cessation of breathing)
is a common problem with major health implications, ranging from excessive
daytime drowsiness to serious cardiac arrhythmias. Obstructive sleep apnea is
associated with increased risks of high blood pressure, myocardial infarction, and
stroke, and with increased mortality rates. Standard methods for detecting and
quantifying sleep apnea are based on respiration monitoring, which often dis-
turbs or interferes with sleep and is generally expensive. A number of studies
during the past 15 years have hinted at the possibility of detecting sleep apnea
using features of the electrocardiogram. Such approaches are minimally intru-
sive, inexpensive, and may be particularly well-suited for screening. The major
obstacle to use of such methods is that careful quantitative comparisons of their
accuracy against that of conventional techniques for apnea detection have not
been published.

We therefore offer a challenge to the biomedical research community: demon-
strate the efficacy of ECG-based methods for apnea detection using a large, well-
characterized, and representative set of data. The goal of the contest is to stim-
ulate effort and advance the state of the art in this clinically significant problem,
and to foster both friendly competition and wide-ranging collaborations. We will
award prizes of US$500 to the most successful entrant in each of two events.

Data for development and evaluation: Data for this contest have kindly
been provided by Dr. Thomas Penzel of Philipps-University, Marburg, Germany
[available on the website].

The data to be used in the contest are divided into a learning set and a test
set of equal size. Each set consists of 35 recordings, containing a single ECG
signal digitized at 100 Hz with 12-bit resolution, continuously for approximately
8 hours (individual recordings vary in length from slightly less than 7 hours to
nearly 10 hours). Each recording includes a set of reference annotations, one
for each minute of the recording, that indicate the presence or absence of apnea
during that minute. These reference annotations were made by human experts
on the basis of simultaneously recorded respiration signals. Note that the refer-
ence annotations for the test set will not be made available until the conclusion

2In the first edition of this book, we presented an algorithm that we claimed solved (6.1)
in linear complexity. In some cases that algorithm yields plausible but not necessarily correct
results and in others it simply crashes.

3http://www.physionet.org/challenge/2000
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of the contest. Eight of the recordings in the learning set include three respira-
tion signals (oronasal airflow measured using nasal thermistors, and chest and
abdominal respiratory effort measured using inductive plethysmography) each
digitized at 20 Hz, and an oxygen saturation signal digitized at 1 Hz. These ad-
ditional signals can be used as reference material to understand how the apnea
annotations were made, and to study the relationships between the respiration
and ECG signals. [...]

Data classes: For the purposes of this challenge, based on these varied
criteria, we have defined three classes of recordings:

Class A (Apnea): These meet all criteria. Recordings in class A contain at
least one hour with an apnea index of 10 or more, and at least 100 minutes
with apnea during the recording. The learning and test sets each contain
20 class A recordings.

Class B (Borderline): These meet some but not all of the criteria. Record-
ings in class B contain at least one hour with an apnea index of 5 or more,
and between 5 and 99 minutes with apnea during the recording. The learn-
ing and test sets each contain 5 class B recordings.

Class C (Control): These meet none of the criteria, and may be considered
normal. Recordings in class C contain fewer than 5 minutes with apnea
during the recording. The learning and test sets each contain 10 class C
recordings.

Events and scoring: Each entrant may compete in one or both of the
following events:

1. Apnea screening: In this event, your task is to design software that can
classify the 35 test set recordings into class A (apnea) and class C (control
or normal) groups, using the ECG signal to determine if significant sleep
apnea is present. [...]

2. Quantitative assessment of apnea: In this event, your software must gen-
erate a minute-by-minute annotation file for each recording, in the same
format as those provided with the learning set, using the ECG signal to
determine when sleep apnea occurs. Your annotations will be compared
with a set of reference annotations to determine your score. Each annota-
tion that matches a reference annotation earns one point; thus the highest
possible score for this event will be approximately 16800 (480 annotations
in each of 35 records). It is important to understand that scores approach-
ing the maximum are very unlikely, since apnea assessment can be very
difficult even for human experts. Nevertheless, the scores can be expected
to provide a reasonable ranking of the ability of the respective algorithms
to mimic the decisions made by human experts.

6.1.1 The Data

Briefly, one can fetch the following records from PhysioNet:
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a01-a20: The a records from individuals that display apnea

b01-b05: The b records4 from individuals diagnosed as borderline

c01-c10: The c records from control or normal individuals

a01er-a04er and b01er and c01er: Identical to a01-a04 and b01 and c01
except augmented with respiration and SpO2 (percent of arterial hemoglobin
saturated with oxygen) signals

summary of training: Expert classifications of each minute in the a, b, and
c records

x01-x35: The test set5; records without classification

Using data visualization tools6 one can see striking oscillations in the apnea
time series. The patients stop breathing for tens of seconds, gasp a few breaths,
and stop again. Each cycle takes about 45 seconds and can go on for most of
the night. We’ve plotted two periods of such an oscillation from record a03 in
Fig. 6.1. The reference or expert classifications provided with the data indicate
these are the last oscillations in the first apnea episode of the night. Over the
entire night’s record of 8 hours and 39 minutes, the patient had apnea for a
total of 4 hours and five minutes in 11 separate episodes. In that time, more
than once a minute, he was waking up enough to start breathing. Ten and a
half minutes after the end of the first apnea episode, the record, as plotted in
Fig. 6.2, looks normal.

In plots like Fig. 6.1, the heart rate visibly increases at the end of the gasping
phase and then decreases during the phase of interrupted respiration. That heart
rate oscillation is the key we used in our initial attempts to classify periods of
apnea. In Fig. 6.3, we’ve plotted both a heart rate derived from the ECG and
the SpO2 signal. The oscillations in the signals track each other, and the expert
classifies only the region of large heart rate oscillation as apnea.

6.2 Using Information from Experts to Train

We first considered the CINC2000 challenge when Andreas Rechtsteiner told
us that he was going to use it as a final project for a class that Professor
McNames was teaching. We suggested that Rechtsteiner try a two state HMM
with autoregressive observation models, i.e., a model like those described in
section 3.1.4 but with scalar observations.

To use the expert classification information in training, Rechtsteiner found
that one can just modify the observation model. The technique is not limited

4The amplitude of the b05 record varies dramatically over different segments of time. We
found it unusable and discarded it entirely.

5The records x33 and x34 are so similar that we suspect they are simultaneous recordings
from different ECG leads. We did not explicitly exploit the similarity in our analysis.

6One can use the script hmmds/applications/apnea/explore.py from the software we used
to create this book to explore aspects of the data.
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Figure 6.1: A segment of record a03. Two cycles of a large apnea induced
oscillation in SpO2 are drawn in the lower plot. The middle plot is the oronasal
airflow signal, and the upper plot is the ECG. The time axis is marked in
hours:minutes:seconds. Notice the increased heart rate just after 0:58:00 and
just before 0:59:00.
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Figure 6.2: A segment of record a03 taken during a period of normal respiration.
The signals are the same as in Fig. 6.1.
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Figure 6.3: A segment of record 03 at the end of an episode of apnea with
indications in both the SpO2 signal and the heart rate (HR) signal. The expert
marked the time before 1:00 as apnea and the time afterwards as normal.
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to HMMs with only two states or two classes; it applies to an arbitrary number
of classes and to arbitrary numbers of states associated with each class. At each
time t, let c[t] denote classification information from an expert about which
states are possible. Specifically c[t] is a vector that indicates that some states are
possible and that the others are impossible. One simply replaces PY [t]|S[t],Y [0:t]

with PY [t],C[t]|S[t],Y [0:t] wherever it occurs in the Baum-Welch algorithm. The
modification forces the system into states associated with the right class during
training.

While the performance of Rechtsteiner’s two state model was not memorable,
models with more states were promising.

6.2.1 The Excellent Eye of Professor McNames

To diagnose the errors, McNames printed spectrograms of every record. As he
reported in [54], the first step in McNames analysis was implementing his own
QRS7 detection algorithm. Then he derived spectrograms from the resulting
QRS analyses. Although the spectrograms discarded phase information that we
hoped was important, they clearly indicated the oscillations that we had tried to
capture with complicated HMMs as intense bands of power at frequencies below
2 bpm (beats per minute). In addition to those low frequency oscillations,
he noticed bands of power between 10 and 20 bpm in the spectrograms (See
Fig. 6.4). That higher frequency power is evidence of respiration. Using both of
those features, he classified the test data by hand. First he classified each entire
record for event 1. Since almost none of the minutes in the normal records are
apnea, he classified each minute in those records as normal. His third attempt
at event 2 was the best entry at the close of the contest.

The question that motivated the contest is “Is the information in an ECG
alone sufficient to classify apnea?” McNames work answered the question affir-
matively. For attempts to do the classification automatically, his work suggests
the following points:

1. Heart rate oscillations at about 1.3 bpm indicate apnea.

2. A clean band at about 14 bpm in the power spectrum indicates normal
respiration.

6.3 Using HMMs to Address the Challenge

In the following sections we use HMMs to address the CINC2000 challenge. We
begin with an HMM scheme for estimating heart rate because, like McNames,
we find off-the-shelf QRS detection codes are not adequate for the variety of the
CINC2000 data. From the estimated heart rate signal for each record, we derive
a sequence of two dimensional observations. The first component is the low pass

7The ECG of a typical heart beat has five distinctive features or waves unimaginatively
called P,Q,R,S, and T. The largest feature is the spike called R. We have labeled the features
in Figure 6.7.
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Figure 6.4: Information about respiration in high frequency bands of power
spectra. This is derived from the a11 record between 20 minutes and 2 hours
and 30 minutes after the start. The upper plot is heart rate (bandpass filtered
0.09-3.66 bpm), the middle plot is a spectrogram of the heart rate, and the
lower plot is the expert classification. A single band of spectral power between
about 10 and 20 bpm without much power below the band in the spectrogram
indicates normal respiration.
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Figure 6.5: In this segment of the ECG for record a03, stars indicate estimates of
the R wave locations by an off-the-shelf detector[55], and ×s indicate estimates
from the algorithm described in Section 6.3.1.

filtered heart rate, and the second is roughly the intensity of the spectrogram
in the range of respiration near 15 beats per minute. Next we fit an HMM
with vector autoregressive observation models as described in Section 3.1.4 to
the two dimensional observations derived from the training data records. And
finally we apply that HMM to classify each minute of the test data.

6.3.1 Estimating Heart Rate

At first we tried using off-the-shelf code to extract heart rates from the Phys-
ioNet ECG data. Figure 6.5 illustrates results of using one of the detectors[51]
implemented by Porr et al.[48], and Figure 6.6 illustrates the challenging diver-
sity of waveforms in the PhysioNet data. To address the diversity of waveforms,
we developed an approach to estimating heart rates from ECGs based on HMMs
that relies on the observation that for each record the shape and duration of the
PQRST pattern doesn’t vary much. For different heart rates the time between
the T wave and the next P wave does change, but the rest of the pattern varies
very little. Figure 6.7 illustrates the invariance.

State topology

Figure 6.8 illustrates the topology of the HMMs we built to capture the invariant
shapes of the PQRST sequences for each individual record. In addition to the
states drawn, there is a special outlier state accommodates ECG-lead noise.
Here are the essential characteristics of the topology:

• A loop of 52 discrete states.
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Figure 6.6: Segments of ECGs from four records. The ECGs for the different
data records were so different from each other that off-the-shelf code was not
adequate for estimating heart rate signals.
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Figure 6.7: At different heart rates the shape and duration of the PQRST
pattern doesn’t change. Only the delay between the sequences changes. Notice
that the lengths of the time intervals in the upper and lower plots are identical.
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Figure 6.8: Illustration of the topology of HMMs for exploiting invariance of
PQRST shapes. The chain of 49 fast states models the invariant PQRST shape.
The variable duration paths through the slow states, S0, S1, and S2, model the
flexible time between T and P waves.



i
i

“main” — 2025/2/21 — 13:28 — page 115 — #125 i
i

i
i

i
i

6.3. USING HMMS TO ADDRESS THE CHALLENGE 115

• A sequence of 49 fast states that don’t branch. Each state n in that
sequence transitions exclusively to its successor n + 1 at each time step.
These fast states model the unvarying PQRST shape.

• Three slow states that model heart rate variations. Each of these three
states transitions to one of the following:

– Itself

– Its successor in the loop

– The first fast state

The minimum number of states visited in a loop is 50, or 500 ms since the ECG
data was sampled at 100 Hz. Consequently the model is not appropriate for
heart rates above 120 bpm.

Observation models and training

We used a Gaussian scalar autoregressive observation model with means for
each state being a linear function of the previous three observations with a fixed
offset and variances fit to each state separately. The models are one dimensional
versions of those described in Section 3.1.4.

We used scipy.signal.find peaks from SciPy to supervise training of an initial
model for one of the records from CINC 2000. We derived models for most8 of
the other records from that initial model via unsupervised training.

Applying trained ECG models

As intended, the trained HMMs track PQRST shapes in the ECG data well.
Figure 6.9 illustrates the performance on two records, a01 and c02, in which
the ECG shapes are quite different. To be clear, we repeat that we trained a
separate HMM on each record.

In addition to analyzing measured ECGs, the models can generate simulated
ECGs, eg, Figure 6.10.

Mapping state sequences to heart rate

We built HMMs of ECG signals to estimate heart rate signals because we believe
that the timing of heart beats has the information that is relevant for detecting
apnea. Decoded state sequences like those that appear in Figure 6.9 are sufficient
for estimating heart rate. Considering the circular character of the topology
depicted in Figure 6.8, the estimated heart rate is simply the rate at which
decoded sequences go around the circle, and the phase of state sequence is not
important for the estimation. It is nice however that one state in the chain of
fast states corresponds closely to the peak of the R wave in the ECGs as appears
in Figure 6.11.

8For a few of the records we used other techniques to obtain initial models. However models
for all records were trained similarly.
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Figure 6.9: State sequences from Viterbi decoding of ECG signals for two records
appear. The invariant PQRST pattern maps to the lines of constant slope. The
varying lengths of the horizontal segments accounts for variable time between
heart beats.
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Figure 6.10: A plausible ECG appears in the upper plot, and the corresponding
state sequence appears in the lower plot. We created both plots by fitting
a model to the a01 ECG data and then driving that model with a random
number generator.
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Figure 6.11: An illustration of using Viterbi decoding to derive heart rate from
an ECG. An ECG segment appears in the upper plot, and the corresponding
segment of the decoded state sequence appears in the middle plot. The × marks
in the middle plot indicate the times when the state is 31. The same times are
also indicated in the upper plot. The inverse of the difference in time between
adjacent ×s provides the estimated heart rate. A smoothed version of those
estimates sampled periodically at 2 Hz appears in the lower plot.
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6.3.2 An Observation Model and HMMs of Heart Rate

While the previous section was about designing HMMs of ECG signals in order
to estimate heart rate signals, here we will address designing HMMs of heart rate
signals in order to detect apnea. In Section 6.2.1 we described two characteristics
that McNames used for classifying each minute, namely:

• Oscillations of the heart rate with periods of about 45 seconds. Such
oscillations appear in Fig. 6.1.

• Modulation of the heart rate by respiration at around 15 beats per minute.
Such modulation is captured by the spectrogram in Fig. 6.4.

We derive these two characteristics from heart rate signals (as appears in Fig. 6.11)
sampled at 2 Hz using spectral techniques that begin with a fast Fourier trans-
form (FFT) of each entire record of about 8 hours. Figure 6.12 illustrates a
transition into apnea in which both characteristics indicate the transition. The
HMM we built for detecting apnea has eleven states and uses fifth order vector
autoregressive observation models of two dimensional observations, with com-
ponents called low pass heart rate and respiration.

Of the host of parameters, we chose the following for the observation model
by hand using one dimensional studies on the training data like Figure 6.13:

Autoregressive Order 5

Model Sample Frequency 4 samples per minute

Low Pass Period 51.1 seconds

Respiration Center Frequency 11.53 bpm

Respiration Filter Width 3.2 bpm

Respiration Smoothing 0.486 bpm

Figure 6.12 illustrates the derivation of HMM observation data from the esti-
mated raw heart rate signal using these parameters.

6.3.3 Using a Sequence of Class Probabilities

Equation (2.22), ie,

w(t, s) ≡ PS[t]|Y [0:T ] (s | y[0 : T ]) ,

provides the probability of each state at each time given the model and all of
the observations. From such state weights, we construct a sequence of ratios
with

r[t] ≡
∑

s∈A w(t, s)∑
s∈N w(t, s)
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Figure 6.12: An illustration of apnea characteristic data derived from heart
rate at a transition into apnea. The expert marked a transition from normal
respiration to apnea in record a03 at minute 427=7:07. A low pass Gaussian
filter applied to the raw heart rate signal produces the trace labeled Low Pass,
and the dots on that trace indicate the data passed as one component of the
observation data to the HMM. A Gaussian filter that passes frequencies in a
band typical for respiration yields the Band Pass trace. The Respiration trace
is a low pass filtered version of the envelope of the Band Pass trace. Again,
the dots indicate data passed to the HMM. The characteristics of apnea are the
large slow oscillations in the Low Pass signal and the drops of the Respiration
signal to low levels.
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Figure 6.13: Performance on the training records (a b and c records excluding
defective records) vs observations per minute. The models have eleven states
and the observation models are vector autoregressive models for heart rate and
respiration.
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where A is the set of apnea states and N is the set of normal states. Finally we
derive a sequence of classifications, c[0 : T ], from the sequence of ratios, r[0 : T ],
by comparing to a threshold, R,

c[t] =

{
N r[t] < R

A r[t] >= R
. (6.2)

A search over parameter values like that illustrated in Figure 6.13 finds R = 6.2
minimizes the number of classification errors on the training data.

6.4 Results

We trained an HMM with the structure and parameters described in Sec-
tion 6.3.2 on the training data (the usable a, b and c records) and then used it to
classify each minute of the training data as either normal, N , or apnea, A. The
results appear in Table 6.1. Results of applying the HMM to the test data (the
x records appear in Table 6.2. We are disappointed that the score on the test
data does not place among the official entries in the CinC Challenge 2000 Top
Scores listed at https://archive.physionet.org/challenge/2000/top-scores.shtml
which have error rates from 0.0738 to 0.1446. While we were able to get slightly
better performance with more complex ideas, the small improvements did not
seem to justify the complexity.

6.5 Classification Versus Estimation

In the early chapters of this book, we have emphasized choosing model param-
eters to maximize the likelihood of the data, the tweaks and fudges we’ve used
in this chapter are concerned with improving classification performance rather
than improving likelihood. While it is true that if one had access to accurate
probabilistic characterizations of observations conditional on class membership
the best classifier would be a likelihood ratio classifier, it is not true that without
such characterizations the best approach to classification is to estimate them.
This point was made forcefully by Vapnik[14] who said, “one should solve the
[classification] problem directly and never solve a more general problem as an
intermediate step.”
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Name NApnea NNormal Apnea→Normal Normal→Apnea NError PError

a01 470 19 71 0.15 0 0.00 71 0.15
a02 420 108 83 0.20 25 0.23 108 0.20
a03 246 273 6 0.02 68 0.25 74 0.14
a04 453 39 24 0.05 8 0.21 32 0.07
a05 276 178 60 0.22 12 0.07 72 0.16
a06 206 304 165 0.80 1 0.00 166 0.33
a07 322 189 159 0.49 25 0.13 184 0.36
a08 189 312 17 0.09 106 0.34 123 0.25
a09 381 114 73 0.19 32 0.28 105 0.21
a10 100 417 58 0.58 9 0.02 67 0.13
a11 222 244 129 0.58 1 0.00 130 0.28
a12 534 43 17 0.03 27 0.63 44 0.08
a13 244 251 33 0.14 41 0.16 74 0.15
a14 383 126 121 0.32 9 0.07 130 0.26
a15 368 142 42 0.11 37 0.26 79 0.15
a16 320 162 60 0.19 12 0.07 72 0.15
a17 158 327 83 0.53 8 0.02 91 0.19
a18 438 51 147 0.34 10 0.20 157 0.32
a19 205 297 24 0.12 18 0.06 42 0.08
a20 315 195 63 0.20 23 0.12 86 0.17
b01 19 468 8 0.42 16 0.03 24 0.05
b02 93 424 11 0.12 131 0.31 142 0.27
b03 73 368 12 0.16 49 0.13 61 0.14
b04 10 419 7 0.70 6 0.01 13 0.03
c01 0 484 0 0.00 3 0.01 3 0.01
c02 1 501 1 1.00 5 0.01 6 0.01
c03 0 454 0 0.00 1 0.00 1 0.00
c04 0 482 0 0.00 0 0.00 0 0.00
c05 3 463 3 1.00 2 0.00 5 0.01
c06 1 467 1 1.00 0 0.00 1 0.00
c07 4 425 4 1.00 7 0.02 11 0.03
c08 0 513 0 0.00 45 0.09 45 0.09
c09 2 466 2 1.00 7 0.02 9 0.02
c10 1 430 1 1.00 19 0.04 20 0.05

Total 6457 10155 1485 0.23 763 0.08 2248 0.14

Table 6.1: Performance of the HMM described in 6.3.2 on the training data.
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Name NApnea NNormal Apnea→Normal Normal→Apnea NError PError

x01 375 148 157 0.42 3 0.02 160 0.31
x02 209 260 23 0.11 68 0.26 91 0.19
x03 12 453 6 0.50 47 0.10 53 0.11
x04 0 482 0 0.00 4 0.01 4 0.01
x05 316 189 6 0.02 88 0.47 94 0.19
x06 0 450 0 0.00 3 0.01 3 0.01
x07 240 269 93 0.39 26 0.10 119 0.23
x08 324 193 14 0.04 12 0.06 26 0.05
x09 167 341 4 0.02 10 0.03 14 0.03
x10 96 414 85 0.89 17 0.04 102 0.20
x11 13 444 9 0.69 15 0.03 24 0.05
x12 57 470 25 0.44 35 0.07 60 0.11
x13 292 214 124 0.42 45 0.21 169 0.33
x14 439 51 264 0.60 0 0.00 264 0.54
x15 200 298 150 0.75 6 0.02 156 0.31
x16 65 450 6 0.09 157 0.35 163 0.32
x17 1 399 1 1.00 15 0.04 16 0.04
x18 2 457 2 1.00 28 0.06 30 0.07
x19 407 80 12 0.03 46 0.57 58 0.12
x20 264 249 45 0.17 36 0.14 81 0.16
x21 120 390 10 0.08 156 0.40 166 0.33
x22 2 480 2 1.00 13 0.03 15 0.03
x23 119 408 15 0.13 30 0.07 45 0.09
x24 1 428 0 0.00 7 0.02 7 0.02
x25 291 219 14 0.05 63 0.29 77 0.15
x26 344 176 99 0.29 51 0.29 150 0.29
x27 487 11 53 0.11 6 0.55 59 0.12
x28 433 62 127 0.29 7 0.11 134 0.27
x29 0 470 0 0.00 0 0.00 0 0.00
x30 326 185 87 0.27 67 0.36 154 0.30
x31 516 41 44 0.09 1 0.02 45 0.08
x32 425 113 71 0.17 1 0.01 72 0.13
x33 3 470 3 1.00 5 0.01 8 0.02
x34 4 471 4 1.00 8 0.02 12 0.03
x35 0 483 0 0.00 5 0.01 5 0.01

Total 6550 10718 1555 0.24 1081 0.10 2636 0.15

Table 6.2: Performance of the HMM described in 6.3.2 on the test data.



i
i

“main” — 2025/2/21 — 13:28 — page 125 — #135 i
i

i
i

i
i

Chapter 7

Particle Filters

More later.

125



i
i

“main” — 2025/2/21 — 13:28 — page 126 — #136 i
i

i
i

i
i

126 CHAPTER 7. PARTICLE FILTERS



i
i

“main” — 2025/2/21 — 13:28 — page 127 — #137 i
i

i
i

i
i

Appendix A

Formulas for Matrices and
Gaussians

Here we review some material necessary for deriving Eqns. (4.24)-(4.29) on page
66. Similar material appears in Appendix A of Kailath et al.[5].

Block Matrix Inverse

If G is an n× n invertible matrix, K is an m×m invertible matrix, and H and
J are n ×m and m × n respectively, then direct matrix multiplication verifies
that[

(G−HK−1J)−1 −(G−HK−1J)−1HK−1

−(K − JG−1H)−1JG−1 (K − JG−1H)−1

] [
G H
J K

]
=

[
I 0
0 I

]
(A.1a)

[
G H
J K

] [
(G−HK−1J)−1 −G−1H(K − JG−1H)−1

−K−1J(G−HK−1J)−1 (K − JG−1H)−1

]
=

[
I 0
0 I

]
,

(A.1b)

assuming that (G−HK−1J)−1 and (K−JG−1H)−1 exist. One can derive other
expressions for the inverse by using the Sherman Morrison Woodbury formula
(Eqn. (A.3)) to expand terms in Eqn. (A.1).

By noting[
(G−HK−1J)−1 −(G−HK−1J)−1HK−1

0 (K − JG−1H)−1

] [
G H
J K

]
=

[
I 0

(K − JG−1H)−1J (K − JG−1H)−1K

]
and taking the determinant of both sides∣∣(G−HK−1J)−1

∣∣ · ∣∣(K − JG−1H)−1
∣∣ · ∣∣∣∣[G H

J K

]∣∣∣∣ =
∣∣(K − JG−1H)−1

∣∣ · |K|
127
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one finds the following formula for determinants∣∣∣∣[G H
J K

]∣∣∣∣ = |K|
∣∣(G−HK−1J)

∣∣ (A.2)

Sherman Morrison Woodbury Formula

If G and K are invertible matrices, H and J have dimensions so that (G + HKJ)
−1

makes sense and exists, and
(
JG−1H + K−1

)−1
exists, then

(G + HKJ)
−1

= G−1 −G−1H
(
JG−1H + K−1

)−1
JG−1. (A.3)

Multiplying both sides by (G + HKJ) verifies the formula. Equation (A.3) is
called the Sherman Morrison Woodbury formula.

To invert (A−1 +C⊤B−1C), when A is an n× n matrix and B is an m×m
matrix, if n > m one can use (A.3) to write(

A−1 + C⊤B−1C
)−1

= A−AC⊤ (CAC⊤ + B
)−1

CA. (A.4)

The right hand side requires inverting an m×m matrix while the left hand side
requires inverting an n× n matrix.

Marginal and Conditional Distributions of a Gaussian

Suppose that W =

[
U
V

]
is a Gaussian random variable with an n dimensional

component U and an m dimensional component V . We write its distribution

W ∼ N (µW ,ΣW ) or equivalently P (w) = N (µW ,ΣW )|w

with

µW =

[
µU

µV

]
and ΣW =

[
ΣUU ΣUV

ΣV U ΣV V

]
≡
[
A C
C⊤ B

]
,

where we have introduced A ≡ ΣUU , B ≡ ΣV V , and C ≡ ΣUV to shorten the
notation. If we denote

Σ−1
W =

[
D F
F⊤ E

]
,

then from Eqns. (A.1) and (A.3)

D = (A− CB−1C⊤)−1 = A−1 + A−1CEC⊤A−1 (A.5a)

E = (B − C⊤A−1C)−1 = B−1 + B−1C⊤DCB−1 (A.5b)

F = −A−1CE = −DCB−1. (A.5c)
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In this notation, the marginal distributions are

P (u) =

∫
P (u, v) dv (A.6a)

= N (µU , A)|u (A.6b)

P (v) =

∫
P (u, v) du (A.6c)

= N (µV , B)|v , (A.6d)

and the conditional distributions are

P (u | v) =
P (u, v)

P (v)
(A.7a)

= N
(
µU + CB−1(v − µv), D−1

)∣∣
u

(A.7b)

P (v | u) =
P (v, u)

P (u)
(A.7c)

= N
(
µV + C⊤A−1(u− µU ), E−1

)∣∣
v

(A.7d)

Notice that the covariance of the marginal distribution of U is given by the UU
block of ΣW , but that the inverse covariance of the conditional distribution of
U is given by the UU block of Σ−1

W .
As a check of these formulas, we examine P (u | v)P (v) and find

P (u | v)P (v) =

√
|D|√

(2π)n
e−

1
2 (u−µU−CB−1(v−µV ))

⊤
D(u−µU−CB−1(v−µV ))

× 1√
(2π)m |B|

e−
1
2 (v−µV )⊤B−1(v−µV )

=
1√

(2π)n+m |ΣW |
exp

(
− 1

2

[
(
u− µU − CB−1(v − µV )

)⊤
D
(
u− µU − CB−1(v − µV )

)
+ (v − µV )⊤B−1(v − µV )

])
=

1√
(2π)n+m |ΣW |

× e−
1
2 ((u−µU )⊤D(u−µU )+2(v−µV )⊤F⊤(u−µU )+(v−µV )⊤E(v−µV ))

= P (u, v)

all is right with the world. In the above, Eqn. (A.2) implies that

√
|D|√
|B|

= 1√
|ΣW |

.

Completing the Square

Some of the derivations in section 4.3 rely on a procedure called completing
the square, which we illustrate with the following example. Suppose that the
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function f(u) is the product of two n dimensional Gaussians, N (µ1,Σ1) and
N (µ2,Σ2), i.e.

f(u) =
1√

(2π)n |Σ1|
e−

1
2 (u−µ1)

⊤Σ−1
1 (u−µ1)

1√
(2π)n |Σ2|

e−
1
2 (u−µ2)

⊤Σ−1
2 (u−µ2)

(A.8)

=
1√

(2π)2n |Σ1| |Σ2|
e−

1
2

[
(u−µ1)

⊤Σ−1
1 (u−µ1)+(u−µ2)

⊤Σ−1
2 (u−µ2)

]
(A.9)

≡ 1√
(2π)2n |Σ1| |Σ2|

e−
1
2

[
Q(u)

]
. (A.10)

By expanding the function Q(u) in the exponent, we find:

Q(u) = u⊤ (Σ−1
1 + Σ−1

2

)
u− 2u⊤ (Σ−1

1 µ1 + Σ−1
2 µ2

)
+ µ⊤

1 Σ−1
1 µ1 + µ⊤

2 Σ−1
2 µ2

(A.11)

= u⊤qu− 2u⊤l + s (A.12)

where the quadratic, linear, and scalar terms are

q =
(
Σ−1

1 + Σ−1
2

)
l =

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
s = µ⊤

1 Σ−1
1 µ1 + µ⊤

2 Σ−1
2 µ2

respectively.
Completing the square means finding values µ, Σ, and R for which Eqn. (A.12)

takes the form
Q(u) = (u− µ)⊤Σ−1(u− µ) + R, (A.13)

where R is not a function of u. One can verify by substitution that the solution
is

Σ−1 = q

µ = Σl

R = s− µ⊤Σ−1µ.

For the product of Gaussians example (A.8),

Σ−1 = Σ−1
1 + Σ−1

2 (A.14a)

µ = Σ
(
Σ−1

1 µ1 + Σ−1
2 µ2

)
(A.14b)

=
(
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 µ1 + Σ−1
2 µ2

)
(A.14c)

R = µ⊤
1 Σ−1

1 µ1 + µ⊤
2 Σ−1

2 µ2 − µ⊤Σ−1µ (A.14d)

= µ⊤
1 Σ−1

1 µ1 + µ⊤
2 Σ−1

2 µ2 −
(
Σ−1

1 µ1 + Σ−1
2 µ2

)⊤ (
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 µ1 + Σ−1
2 µ2

)
.

(A.14e)

In words the product of two Gaussian density functions is an unnormalized
Gaussian density function in which the inverse covariance is the sum of the
inverse covariances of the factors and the mean is the average of the factor
means weighted by the inverse covariances.
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EM Convergence Rate

Now we calculate a linear approximation of the behavior of the EM algorithm
in the neighborhood of a fixed point. The manipulations here require that the
probability and likelihood functions have continuous first and second derivatives
which we implicitly assume. We let T denote the action of one iteration of the
algorithm and let θ∗ denote a fixed point with

θ[n + 1] = T (θ[n]) (B.1)

T (θ∗) = θ∗ with Taylor series (B.2)

T (θ) = θ∗ +

[
∂T (θ)

∂θ

]
θ∗

(θ − θ∗) + Remainder (B.3)

Q(θ′, θ) ≡ ES|y,θ log (P (y, S | θ′) (B.4)

T (θ) = argmax
θ′

Q(θ′, θ). (B.5)

For a given value of θ, the derivative of Q(θ′, θ) at a maximum is zero, and we
write

Ψ(θ′, θ) ≡ ∂Q(θ′, θ)

∂θ′
(B.6)

Ψ(T (θ), θ) = 0 (B.7)

dΨ(T (θ), θ)

dθ
= 0 (B.8)

dΨ(T (θ), θ)

dθ
=

∂Ψ(θ′, θ)

∂θ′

∣∣∣∣
T (θ),θ

∂T (θ)

∂θ

∣∣∣∣
θ

+
∂Ψ(θ′, θ)

∂θ

∣∣∣∣
T (θ),θ

(B.9)

=
∂2Q(θ′, θ)

∂θ′2

∣∣∣∣
T (θ),θ

∂T (θ)

∂θ

∣∣∣∣
θ

+
∂2Q(θ′, θ)

∂θ∂θ′

∣∣∣∣
T (θ),θ

= 0 (B.10)

∂T (θ)

∂θ

∣∣∣∣
θ

= −
[
∂2Q(θ′, θ)

∂θ′2

∣∣∣∣
T (θ),θ

]−1 [
∂2Q(θ′, θ)

∂θ∂θ′

∣∣∣∣
T (θ),θ

]
. (B.11)
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Manipulating the first of the two second derivatives in (B.11) we find

∂2Q(θ′, θ)

∂θ′2
=

∂2

∂θ′2
ES|y,θ log (P (y, S | θ′) (B.12)

=
∂2

∂θ′2
ES|y,θ (log (P (y | θ′) + log (P (S | y, θ′)) (B.13)

=
∂2

∂θ′2
log (P (y | θ′) + ES|y,θ

(
∂2

∂θ′2
log (P (S | y, θ′)

)
(B.14)

= −Jy − IS|y, (B.15)

where Jy ≡ − ∂2

∂θ2 log (P (y | θ) is called the observed information that y provides
about θ′, and IS|y is the Fisher information of the unobserved data. Now
manipulating the second of the two second derivatives in (B.11) we find

∂2Q(θ′, θ)

∂θ′∂θ
=

∂2

∂θ′∂θ
ES|y,θ log (P (y, S | θ′) (B.16)

=
∂2

∂θ′∂θ
ES|y,θ (log (P (y | θ′) + log (P (S | y, θ′)) (B.17)

=
∂2

∂θ′∂θ
log (P (y | θ′) +

∂

∂θ
ES|y,θ

(
∂

∂θ′
log (P (S | y, θ′)

)
(B.18)

=
∂

∂θ
ES|y,θ

(
∂

∂θ′
log (P (S | y, θ′)

)
(B.19)

=
∂

∂θ

∑
s

P (s | y, θ)
∂P (s|y,θ′)

∂θ′

P (s | y, θ′) (B.20)

=
∑
s

P (s | y, θ)
∂P (s|y,θ)

∂θ

P (s | y, θ)

∂P (s|y,θ′)
∂θ′

P (s | y, θ′) (B.21)

At the fixed point θ∗ = θ′ = θ and1

∂2Q(θ′, θ)

∂θ′∂θ

∣∣∣∣
θ∗,θ∗

= ES|y,θ∗

(
∂

∂θ′
log (P (S | y, θ′))

)2

(B.22)

≡ IS|y. (B.23)

Combining (B.23) and (B.15) with (B.11) we write

∂T (θ)

∂θ

∣∣∣∣
θ∗

=
[
Jy + IS|y

]−1
IS|y. (B.24)

Equation (B.24) matches our intuition. If the observed information, Jy, is much
larger than the unobserved information, IS|y, the derivative is small and the
convergence is fast. Alternatively, if the unobserved information dominates,
then the derivative is close to one and the convergence is slow.

1This is an alternative calculation of Fisher information.
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Linear Stability of EM

Here we use an idea inspired by Sylvester’s law of inertia2 to show that if Jy is
positive definite then T is linearly stable at θ∗.

We need the following lemma: If A is positive definite and symmetric and B
is positive definite and symmetric then the eigenvalues of their product C = AB
are positive. Because A is positive definite and symmetric, there is an X with

A = XX⊤ and we can define

Γ ≡ X−1CX = X−1XX⊤BX

Γ = X⊤BX

By assumption B is positive definite so y⊤By > 0 ∀y ̸= 0. Now ∀z ̸=
0, z⊤X⊤BXz > 0 because Xz is a y. So Γ is positive definite. The sym-
metry of B implies that Γ is also symmetric. Thus Γ is positive definite and
symmetric, and all of its eigenvalues are positive. Because they are related by
a similarity transformation, Γ and C have the same eigenvalues, and we know
that all of the eigenvalues of AB = C are positive.

At a fixed point θ∗, T is linearly stable if and only if |λ| < 1 for all eigenvalues
λ of its derivative D. From (B.24) we find

D =
[
I−1
S|yJy + 1

]−1

D−1 = I−1
S|yJy + 1

D−1 − 1 = I−1
S|yJy (B.25)

Since the right hand side of (B.25) satisfies the premises of the lemma, each its
eigenvalues λR is positive. Now for each eigenvalue of the right hand side there
is an eigenvalue of D with

1

λD
− 1 = λR

λD =
1

1 + λR
and since λR > 0

0 < λD < 1. (B.26)

Thus if the eigenvalues of Jy are positive (because it is symmetric, this is equiv-
alent to it being positive definite) then T is linearly stable. A similar argument

shows that if Jy ≡ − ∂2

∂θ2 log (P (y | θ) has negative eigenvalues then T is linearly
unstable.

In summary: Qualitatively T acts like a gradient flow on L ≡ log (P (S | y, θ);
convergence to fixed point of T that is a local maximum of the likelihood is
generic and convergence to a saddle point of the likelihood is not generic.

2Sylvester’s law of inertia is: If B is a symmetric matrix, then for any invertible matrix
A, the number of positive, negative and zero eigenvalues (called the inertia of the matrix) of
C = ABA⊤ is constant.
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Appendix C

Notes on Software

We found that writing the text for this book took less time than writing the
supporting software. All of the software we’ve used (both the code we’ve written
and the software that that code depends on) for this book is free software. After
fetching our code, typing “make book” in the top level directory of the hmmds
project will create a copy of the book in a file called main.pdf after some hours
of computation. ToDo: Where can one get the software? On what systems
does the code run?

Data

We used the following sets of data for examples:

Tang’s laser data Carl Otto Weiss mailed us a CD full of data from various
experiments that he and Tang did in the 1980s and 1990s. Although we
analyzed many of the files, we finally used only a file called LP5.DAT in
the book (see Section 1.1). The file LP5.DAT is included in hmmdsbook.

H. L. Mencken’s A Book of Prefaces We used Mencken’s book for the parts
of speech example in Section 1.3.2. Although the code fetches the book
from www.gutenberg.org as of April, 2007, we planned to include the
parsed text in hmmdsbook.

CINC2000 ECG data We used Dr. Thomas Penzel’s ECG measurements
throughout Chapter 6. Although the code fetches the the data from
www.physionet.org/physiobank/database/apnea-ecg as of April, 2007, we
planned to include much smaller files that contain estimates of the timing
of heart beats in hmmdsbook.
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Clarity and Efficiency

Before the SciPy or NumPy packages existed, we wrote early versions of the
code for this book in C to make it run fast. Since we wrote those early versions,
SciPy and NumPy have made most of that old C code obsolete. Now we have
Python code for all of the algorithms described in the book.

We also provide Cython code for a few of the algorithms. While the Cython
code is faster, it is harder to read and debug. The interfaces to call Cython
code match the interfaces to the Python code. We recommend developing with
the Python code and after that if you need the speed, try the Cython versions.

Here is the heart of our simple Python implementation of the forward algo-
rithm described in about 4 pages in Section 2.1. It looks pretty simple here.

# last is a conditional distribution of state probabilities.

# What it is conditioned on changes as the calculations

# progress.

last = numpy.copy(self.p_state_initial.reshape(-1))

for t, likelihood_t in enumerate(self.state_likelihood):

last *= likelihood_t # Element-wise multiply

self.gamma_inv[t] = 1 / last.sum()

last *= self.gamma_inv[t]

self.alpha[t, :] = last

last[:] = numpy.dot(last, self.p_state2state)

And here is the heart of the corresponding implementation of the backward
algorithm. It is even simpler.

# last and beta are analogous to last and alpha in forward(),

# but the precise interpretations are more complicated.

last = numpy.ones(self.n_states)

for t in range(len(self.state_likelihood) - 1, -1, -1):

self.beta[t, :] = last

last *= self.state_likelihood[t] * self.gamma_inv[t]

last[:] = numpy.dot(self.p_state2state, last)
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Notation

Throughout the book we write about random variables and stochastic processes.
We have tried to select notation that is as simple as possible without being
ambiguous. To illustrate the challenge suppose that we have been talking about
gambling and the weather and that we say “the probability of 5 is 0.16”. Among
the many things that we could mean are the following:

Prob(top face of die = 5) = 0.16 (C.1)

lim
ϵ→0

Prob(5 < total rainfall today in millimeters < 5 + ϵ)

ϵ
= 0.16 (C.2)

As a less cumbersome notation we prefer PD(5) = 0.16 or PR(5) = 0.16, where
P denotes either a probability mass function or a probability density function.
We only use a subscript when it is necessary to specify which function we mean.

In general we use the following conventions:

X Upper case indicates a random variable. Although the notation
does not suggest it, the notion of a random variable includes a
set of possible values or outcomes and a probability distribution
for those values.

x Lower case indicates an outcome or value of a random variable.

X Occasionally we use a calligraphic font to indicate the alphabet or
set of all possible values of a random variable X.

X[0 : T ] A stochastic process indexed by the sequence [0, 1, 2, . . . , T − 1],
i.e.,
X[0], X[1], . . . , X[T − 1].

x[0 : T ] A particular possible outcome of the stochastic process X[0 : T ].

X[t] The random variable that results from picking a single component
of a stochastic process.

P (x) The probability (or density) that a random variable will have the
particular value x. We do not put a subscript on P when the
context permits us to drop it without ambiguity.
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PX[t] (x) The probability that the value of X[t] is x.

PX[t+1]|X[t] (xa | xb) The conditional probability that the value of X[t + 1] is xa

given that the value of X[t] is xb.

µ(β) The probability that an outcome is in the set β. We occasionally
use this notation from measure theory in Chapter 5.

P (x | θ) Rather than a subscript, we occasionally use a conditioning vari-
able to specify one of many possible probability distributions.

Symbols

The following symbols usually have the meanings described below:

α(t, s) The conditional probability that at time t the system is in state
s given the observations up to the present,

α(t, s) ≡ PS(t)|Y [0:t] (s | y[0 : t]) .

Also called the forward updated distribution in the Kalman filter
literature. (page 22)

β(t, s) An intermediate quantity calculated in the backwards algorithm
which is used somewhat like α in the forward algorithm. One may
use either of the following two equations to define β

β(t, s) =
PY [t+1:T ]|S[t] (y[t + 1 : T ] | s)

P (y[t + 1 : T ] | y[0 : t])

=
PS[t]|Y [0:T ] (s | y[0 : T ])

α(t, s)
=

PS[t]|Y [0:T ] (s | y[0 : T ])

PS[t]|Y [0:t] (s | y[0 : t])
.

The interpretation of β is less intuitive than the interpretation
of α. It is also called the backward forecast distribution in the
Kalman filter literature. (page 30)

γ(t) The probability of the present observation given the history. (page
22)

θ The entire collection of parameters that defines a model. (page
21)

ν(t, s) Used in discussing the Viterbi algorithm to denote the utility of
the best sequence ending in state s.

ν(t, s) ≡ log (P (y[0 : t + 1], s̃[0 : t + 1](s)))

(page 26)
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bpm Beats per minute. (page 110)

[DF (x)] δ The derivative of the function F at x applied to the vector δ.
This notation emphasizes that DF (x) is a linear map. (page 76)

ECG Electrocardiogram (page 106)

Eq(X)(F (X)) The expected value of the function F over random variable X
with distribution q. (page 30)

H(U) The entropy of a discrete random variable U . (page 82)

H̃(U) Differential entropy of the continuous random variable U . (page
82)

hKS Kolmogorov Sinai entropy. (page 85)

h(X) The entropy rate of a stochastic process X. (page 84)

I The identity operator; a diagonal matrix of ones. (page 2)

N (µ,Σ) A normal or Gaussian distribution function; µ is an n dimensional
vector and Σ is an n × n matrix. Writing X ∼ N (µ,Σ) means
X is distributed normally with mean µ and covariance Σ and
the probability density at any particular vector x is N (µ,Σ)|x.
(page 128)

SpO2 Percent of arterial hemoglobin saturated with oxygen. (page 106)

w̃(t, s̃, s) In the reestimation phase of the Baum-Welch algorithm, the weight
assigned to the transition from state s at time t to state s̃ at time
t + 1,

w̃(t, s̃, s) ≡ PS[t+1],S[t]|Y [0:T ] (s̃, s | y[0 : T ]) .

(page 32)

w(t, s) In the reestimation phase of the Baum-Welch algorithm, the weight
assigned to state s at time t,

w(t, s) ≡ PS[t]|Y [0:T ] (s | y[0 : T ]) .

(page 32)
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