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Book from Mini-Symposium at DS2001 on Hidden
Markov Models

Discrete state dynamics

P (s[t+ 1] | s[t])

Simplest case: discrete
observation models

P (y[t] | s[t])

For ECG: Autoregressive
observation models

P (y[t] | s[t], y[t− 3], · · · y[t− 1])



Goal of CINC 2000: Use ECG to Detect Apnea

Computers in Cardiology 2000 Challenge: Classify EKG
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Intermediate Objectives:
Detect QRS Pattern → Estimate Heart Rate



See Apnea in Heart Rate
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QRS From GitHub
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Results from https://github.com/berndporr/py-ecg-detectors
aren’t good enough.



Unvarying PQRST Duration
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At different heart rates the shape and duration of the PQRST
pattern doesn’t change. Only the delay between the sequences
changes.



HMM State Structure
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Hidden Markov Model State Structure

▶ Loop of 52 discrete states

▶ A sequence of 49 fast states that don’t branch, state n
must transition to state n+ 1 at each time step

▶ Three slow states accommodate heart rate variations. Each
of the three branches to one of the following:
▶ Itself
▶ Its successor
▶ The first fast state

The minimum number of states visited in a loop is 50, or
500 ms since the ECG data was sampled at 100 Hz. The model
is not appropriate for heart rates above 120 bpm.
A special outlier state accommodates ECG-lead noise.



HMM Observation Model

Given that the system is in state s at time step t, and that the
previous observations were y[0], y[1], . . . y[t− 1] the model
calculates a probabilistic forecast for the observation y[t] as
follows:

▶ The mean is an affine function of the past 3 observations:

µ = a0 + a1 · y[t− 1] + a2 · y[t− 2] + a3 · y[t− 3]

▶ The residual is Gaussian

y[t] ∼ N (µ, σ2)

▶ The parameters a and σ2 are functions of the state s

I used scipy.signal.find peaks to supervise training of an initial
model for one of the records from CINC 2000. I derived models
for the other records from that initial model via unsupervised
training.



Results
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Variations in heart rate affect only the duration of residence in
slow states.



Results
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Driving models with a random number generator yields
simulations that look plausible.



Results
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The technique handles varying lead placement.



The End

Questions?
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