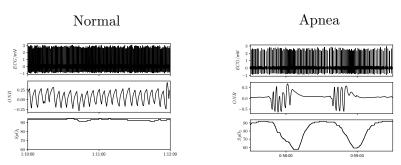
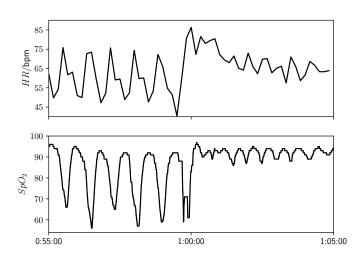
Estimating Dynamics and Data Assimilation to Detect Obstructive Sleep Apnea

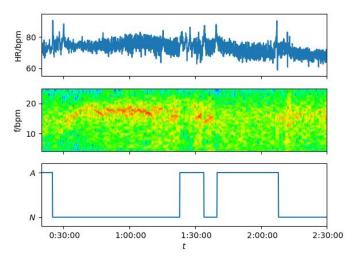

Andrew M. Fraser

SIAM DS25

2025-5-11

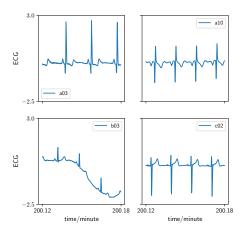
Goal of CINC 2000: Use ECG to Detect Apnea


Computers in Cardiology 2000 Challenge: Classify EKG

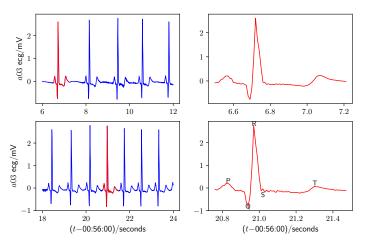

Intermediate Objectives:

Detect QRS Pattern \rightarrow Estimate Heart Rate

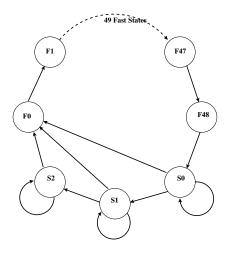
See Apnea in Heart Rate



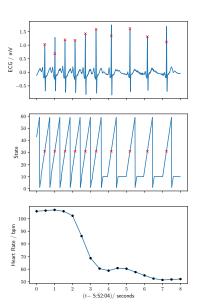
Respiration in Spectrogram


James McNames saw respiration between 10 and 20 cpm.

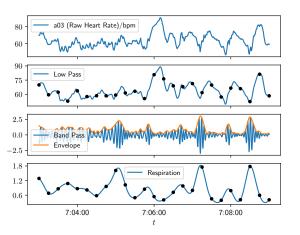
Different Strokes


The waveforms differ between records.

Unvarying PQRST Duration

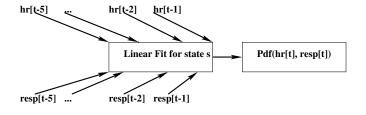

At different heart rates the shape and duration of the PQRST pattern doesn't change. Only the delay between the sequences changes.

HMM State Structure

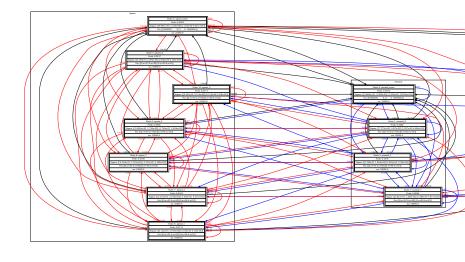


Code fits deterministic chain of 49 states to unvarying PQRST data. Variable residence time in states s_0, s_1 and s_2 accommodates delay between PQRST sequences.

Heart Rate from Viterbi Algorithm


2-d Vector Observations

Observation at t is


$$\boldsymbol{y}[t] \equiv (\text{Low Pass}[t], \text{Respiration}[t])$$

Observation Model Given s[t] = s

$$\begin{bmatrix} \text{hr} \\ \text{resp} \end{bmatrix} [t] \middle| s \sim \mathcal{N} (\boldsymbol{\mu}_{s,t}, \boldsymbol{\Sigma}_s) \text{ with } \boldsymbol{\mu}_{s,t} = L_s(\text{past 5 observations})$$

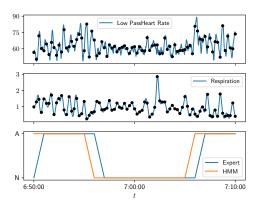
Schematic of HMM from Graphviz

7 apnea states and 4 normal states.

Training and Classification

Choose maximum likelihood parameters given the training data, y_{training}

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} P(y_{\text{training}}|\boldsymbol{\theta}).$$


For each testing record consider all of the data, y[0:T], and for each state, s_i , and each time, t, calculate the probability of being in that state at that time,

$$w_{t,i} \equiv P\left(s[t] = s_i | y[0:T], \hat{\boldsymbol{\theta}}\right).$$

Finally classify each time using the ratio

$$R[t] \equiv \frac{\sum_{i \in \text{Apnea}} w_{t,i}}{\sum_{i \in \text{Normal}} w_{t,i}}.$$

Classification Performance

Error rates:

- 14% On training data
- 15% On testing data
- 7.5% Classification by eye won in 2000

Multi-Level Modeling?

Here, I have used separate dynamical models of these three aspects of physiology:

- ▶ Dynamics of single heart beat
- ▶ Dynamics of respiration
- Dynamics of apnea

Separating those aspects seems appropriate and useful in a way that I would like to quantify.

The End

Questions?