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Goal of CINC 2000: Use ECG to Detect Apnea

Computers in Cardiology 2000 Challenge: Classify EKG
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Intermediate Objectives:
Detect QRS Pattern — Estimate Heart Rate



See Apnea in Heart Rate
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Respiration in Spectrogram
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James McNames saw respiration between 10 and 20 cpm.



Different Strokes
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The waveforms differ between records.



Unvarying PQRST Duration
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At different heart rates the shape and duration of the PQRST

pattern doesn’t change. Only the delay between the sequences
changes.



HMM State Structure

Code fits deterministic chain of 49 states to unvarying PQRST
data. Variable residence time in states sg, s1 and s
accommodates delay between PQRST sequences.



Heart Rate from Viterbi Algorithm
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2-d Vector Observations
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Observation at ¢ is

y[t] = (Low Pass[t], Respiration]t])



Observation Model Given s[t] = s

hr[.ﬂ\ﬁi\\%\

Linear Fit for state s Pdf(hr([t], resp[t])

resp[t-5] ... resp[t-2] resp[t-1]

L:p} [t]| s ~ N (pst,3s) with ps, = Ls(past 5 observations)




Schematic of HMM from Graphviz

7 apnea states and 4 normal states.



Training and Classification

Choose maximum likelihood parameters given the training
data, Ytraining

~

6 = arggnax P(ytraining"g)-

For each testing record consider all of the data, y[0 : T, and for
each state, s;, and each time, t, calculate the probability of
being in that state at that time,

wy; = P (s[t] = s;|y[0 : T],é) .
Finally classify each time using the ratio

R[t] _ ZiEApnea Wi
ZiGNormaI Wi



Classification Performance
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Error rates:
14% On training data
15% On testing data
7.5% Classification by eye won in 2000



Multi-Level Modeling?

Here, I have used separate dynamical models of these three
aspects of physiology:

» Dynamics of single heart beat

» Dynamics of respiration

» Dynamics of apnea

Separating those aspects seems appropriate and useful in a way
that I would like to quantify.



The End

Questions?
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