Entropy, Cross Entropy and Data Assimilation

Data Assimilation: Observations \rightarrow States $\in \mathbb{R}^3$

 $200 \cdot$

Laser data from Tang and Weiss Extended Kalman smoothing for state space trajectory estimate

HMMs & Data Assimilation: Observations \rightarrow States $\in \mathbb{Z}$

Parameters, θ , of Hidden Markov Model (HMM) with states $s \in \mathbb{Z}$ and observations $y \in \mathbb{Z}$:

 $P_{S \leftarrow S}$: State to state transition probabilities

 $P_{Y \leftarrow S}$: Conditional observation probabilities

Estimation algorithms:

Forward Filter: Conditional probability of states $P(x[t] \mid y[0:t+1], \theta)$ MLE Parameters: (Forward-Backward, also known as Baum-Welch)

$$\hat{\theta} = \operatorname{argmax} P(y[0:1000] \mid \theta)$$

MAP States: (Viterbi)

$$\hat{s}[0:1000] = \operatorname*{argmax}_{s[0:1000]} P(s[0:1000] \mid y[1000], \theta)$$

Variations on a Theme

Forward data assimilation alternates between update & forecast.

 $\alpha(x,t) \equiv P(X[t] = x \mid y[0:t+1])$ Update: $\alpha(x,t) \propto a(x,t) P_{Y \leftarrow X}(y[t] \mid x)$

One must evaluate $\int \alpha(x,t) dx$ to normalize the update.

Forecast:

$$\begin{aligned} a(x,t) &\equiv P(X[t] = x \mid y[0:t]) \\ a(x,t) &= \int \alpha(\chi,t-1) P_{X \leftarrow X}(x \mid \chi) d\chi \end{aligned}$$

Kalman Filter $P_{X \leftarrow X}$ and $P_{Y \leftarrow X}$ are linear with Gaussian residuals. **Extended Kalman Filter** Kalman filter for nonlinear functions with local linear approximations.

Hidden Markov Model State and observation spaces are finite sets. **Particle Filter** Monte-Carlo for integrals. Probabilities represented by clouds of points.

Entropy and Lyapunov Exponents

For
$$\forall y[0:n] \in A_{\epsilon}^{(n)}$$
, the typical or plausible set

$$\frac{-\log(P_{\mu}(y[0:n]))}{n} = h \pm \epsilon \quad \text{definition } h \text{ is the rate that } \text{prob} \to 0.$$

$$\Pr\left\{A_{\epsilon}^{(n)}\right\} > 1 - \epsilon \quad h \text{ is the rate that } A_{\epsilon}^{(n)} \text{grows.}$$

$h(\mu|$

So **0.906** is a lower **bound** for the cross entropy of a model of time series from the Lorenz system.

Use HMMs with many states to approach the bound.

Extended Kalman Filter

Given a model for states x and ob- For Figures 1–3 I added draws from Gaussians with scales σ_{η} and σ_{ϵ} to servations y in which the states and observations respectively of Lorenz simulations and applied EKFs.

$$\begin{array}{c} x[t + \\ y \end{array}$$

where f and g are differentiable but perhaps nonlinear and η and ϵ are iid Gaussian noise, extended Kalman filtering (EKF) is the practice of using Gaussians to model conditional distributions of states and observations. One propagates the means calculate covariances.

Entropy for true model P_{μ}

$$h(\mu) \equiv \lim_{n \to \infty} -\frac{1}{n} \mathbb{E}_{\mu} \left[\log(P_{\mu}(y[0:n])) \right]$$

Cross Entropy of other model θ wrt true μ

$$\begin{split} h(\mu || \theta) &\equiv \lim_{n \to \infty} -\frac{1}{n} \mathbb{E}_{\mu} \left[\log(P_{\theta}(y[0:n])) \right] \\ |\theta) - h(\mu) &\geq 0 \quad \text{equality} \quad \rightarrow \mu = \theta \text{ almost everywhere} \end{split}$$

Lyapunov exponents, λ_i characterize the exponential rates that trajectories converge or diverge. Estimate them numerically with Benettin's procedure that requires integrating tangent equation. Work of Ruelle, Pesin, Ledrappier, Young says that for the Lorenz system the largest exponent is equal to the entropy, ie,

$$h = \lambda_0 \approx 0.906.$$

$$1] = f(x[t]) + \eta[t]$$

$$[t] = g(x[t]) + \epsilon[t]$$

with the functions f and g and uses Figure 1: Level sets of conditional and characterizations of the forecast the derivatives of those functions to Gaussians illustrate forecast and up- errors. date distributions.

Particle Filter

To find something better than an HMM with zillions of states:

- Cover attractor with boxes, ie, particles
- Assign a uniform probability density in each box
- Use numerical ODE integration of Lorenz system and its tangent to move boxes forward in time
- When boxes get too big subdivide them

noise, σ_{ϵ} , and the time interval between samples, τ_s . While the slopes Figure 2: Time series of observations on the right match the true entropy, the intercepts are negative because the models are not optimal.

andy@FraserPhysics.com

• When boxes overlap and get too numerous, random resample to decimate