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ODE → Observations

ẋ = F (x)

x[0 : 10000] = integrate(F, nt = 10000,∆τ = 0.15)

bins = [−10, 0, 10]
y = G(x)

y[0 : 10000] = digitize(x[0 : 10000, 0], bins])
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Data Assimilation:
Observations → States ∈ R3

Laser data from Tang and Weiss
Extended Kalman smoothing for state space trajectory estimate

x̂ = argmax
x

P (x | y)
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HMMs & Data Assimilation:
Observations → States ∈ Z
Parameters, θ, of Hidden Markov Model (HMM) with states s ∈ Z and
observations y ∈ Z:

PS←S: State to state transition probabilities

PY←S: Conditional observation probabilities

Estimation algorithms:

Forward Filter: Conditional probability of states P (x[t] | y[0 : t+ 1], θ)

MLE Parameters: (Forward-Backward, also known as Baum-Welch)

θ̂ = argmax
θ

P (y[0 : 1000] | θ)

MAP States: (Viterbi)

ŝ[0 : 1000] = argmax
s[0:1000]

P (s[0 : 1000] | y[1000], θ)
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Variations on a Theme

Forward data assimilation alternates between update & forecast.

Update:
α(x, t) ≡ P (X [t] = x | y[0 : t + 1])

α(x, t) ∝ a(x, t)PY←X(y[t] | x)

One must evaluate
∫
α(x, t)dx to normalize the update.

Forecast:
a(x, t) ≡ P (X [t] = x | y[0 : t])
a(x, t) =

∫
α(χ, t− 1)PX←X(x | χ)dχ

Kalman Filter PX←X and PY←X are linear with Gaussian residuals.

Extended Kalman FilterKalman filter for nonlinear functions with
local linear approximations.

Hidden Markov Model State and observation spaces are finite sets.

Particle FilterMonte-Carlo for integrals. Probabilities represented by
clouds of points.

Entropy and Lyapunov Exponents

Entropy for true model Pµ

h(µ) ≡ lim
n→∞−

1

n
Eµ

[
log(Pµ(y[0 : n]))

]
For ∀y[0 : n] ∈ A

(n)
ϵ , the typical or plausible set

− log(Pµ(y[0 : n]))

n
= h± ϵ definition h is the rate that prob→ 0.

Pr
{
A
(n)
ϵ

}
> 1− ϵ∣∣∣A(n)

ϵ

∣∣∣ ≤ en(h+ϵ) h is the rate that A
(n)
ϵ grows.

Cross Entropy of other model θ wrt true µ

h(µ||θ) ≡ lim
n→∞−

1

n
Eµ [log(Pθ(y[0 : n]))]

h(µ||θ)− h(µ) ≥ 0 equality → µ = θ almost everywhere

Lyapunov exponents, λi characterize the exponential rates that trajec-
tories converge or diverge. Estimate them numerically with Benettin’s pro-
cedure that requires integrating tangent equation. Work of Ruelle, Pesin,
Ledrappier, Young says that for the Lorenz system the largest exponent is
equal to the entropy, ie,

h = λ0 ≈ 0.906.

So 0.906 is a lower bound for the cross entropy of a model of time series
from the Lorenz system.
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Use HMMs with many states to approach the bound.

Extended Kalman Filter
Given a model for states x and ob-
servations y in which

x[t + 1] = f (x[t]) + η[t]

y[t] = g(x[t]) + ϵ[t]

where f and g are differentiable but
perhaps nonlinear and η and ϵ are iid
Gaussian noise, extended Kalman
filtering (EKF) is the practice of us-
ing Gaussians to model conditional
distributions of states and observa-
tions. One propagates the means
with the functions f and g and uses
the derivatives of those functions to
calculate covariances.

For Figures 1–3 I added draws from
Gaussians with scales ση and σϵ to
the states and observations respec-
tively of Lorenz simulations and ap-
plied EKFs.
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Figure 1: Level sets of conditional
Gaussians illustrate forecast and up-
date distributions.
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Figure 2: Time series of observations
and characterizations of the forecast
errors.
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Figure 3: Dependence of cross en-
tropy on state noise, ση, observation
noise, σϵ, and the time interval be-
tween samples, τs. While the slopes
on the right match the true entropy,
the intercepts are negative because
the models are not optimal.

Particle Filter

To find something better than an HMM with zillions of states:

• Cover attractor with boxes, ie, particles

•Assign a uniform probability density in each box

•Use numerical ODE integration of Lorenz system and its tangent to move
boxes forward in time

•When boxes get too big subdivide them

•When boxes overlap and get too numerous, random resample to decimate
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